Skip to content

Research at St Andrews

1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

Research output: Contribution to journalArticle

Abstract

The Scourie dyke swarm has long been important to unravelling the geological history of the Lewisian Gneiss Complex (LGC) and the North Atlantic Craton. Recent dating has documented that the majority of those dykes were emplaced between c. 2418–2375 Ma. Here we show that a quartz dolerite dyke in the Rona Terrane of the LGC has a U-Pb zircon age of 1989.08 +4.3/−0.99 Ma. This is the first mafic dyke to be dated from the Rona terrane, the southernmost of those proposed for the terrane model of the LGC. Our new age also overlaps with the c. 1992 Ma age of a previously dated olivine gabbro dyke in the Northern region of the LGC and shows that the LGC contains at least three, and possibly four, temporally discrete episodes of Palaeoproterozoic mafic magmatism: The Scourie dyke swarm ‘sensu stricto’ at c. 2.4 Ga; a suite of younger dykes at c. 1.99 Ga, referred to here as the Strathan dyke swarm; and the c. 1.99–1.90 Ga mafic rocks that are part of the Palaeoproterozoic Loch Maree Group. A c. 2.04 Ga dyke in the Assynt terrain may be part of the younger suite of dykes or perhaps records a temporally separate event. Crucially, our new age data demonstrate that suites of mafic dykes emplaced across the mainland LGC are similar in age and supports the correlation of structural and metamorphic features across that Complex.
Close

Details

Original languageEnglish
Pages (from-to)224-231
JournalPrecambrian Research
Volume329
Early online date28 Dec 2018
DOIs
Publication statusPublished - Aug 2019

    Research areas

  • Lewisian Gneiss Complex, Mafic dykes, Rona terrane, Terrane model, Structural correlation

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The pyrite multiple sulfur isotope record of the 1.98 Ga Zaonega Formation: evidence for biogeochemical sulfur cycling in a semi-restricted basin

    Paiste, K., Pellerin, A., Zerkle, A. L., Kirsimäe, K., Prave, T., Romashkin, A. E. & Lepland, A., 21 Jan 2020, In : Earth and Planetary Science Letters. 534, 116092.

    Research output: Contribution to journalArticle

  2. A marine origin for the late Mesoproterozoic Copper Harbor and Nonesuch Formations of the Midcontinent Rift of Laurentia

    Jones, S. M., Prave, A. R., Raub, T. D., Cloutier, J., Stüeken, E. E., Rose, C. V., Linnekogel, S. & Nazarov, K., Jan 2020, In : Precambrian Research. 336, 105510.

    Research output: Contribution to journalArticle

  3. Anaerobic nitrogen cycling on a Neoarchean ocean margin

    Mettam, C. W., Zerkle, A. L., Claire, M., Prave, A. R., Poulton, S. W. & Junium, C. K., 1 Dec 2019, In : Earth and Planetary Science Letters. 527, 115800.

    Research output: Contribution to journalArticle

  4. Low δ18O rocks in the Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: a record of ancient meteoric water captured by the early Paleoproterozoic global mafic magmatism

    Zakharov, D. O., Bindeman, I. N., Serebryakov, N. S., Prave, A. R., Azimov, P. Y. & Babarina, I. I., 1 Oct 2019, In : Precambrian Research. 333, 105431.

    Research output: Contribution to journalArticle

Related by journal

  1. A marine origin for the late Mesoproterozoic Copper Harbor and Nonesuch Formations of the Midcontinent Rift of Laurentia

    Jones, S. M., Prave, A. R., Raub, T. D., Cloutier, J., Stüeken, E. E., Rose, C. V., Linnekogel, S. & Nazarov, K., Jan 2020, In : Precambrian Research. 336, 105510.

    Research output: Contribution to journalArticle

  2. Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gardiner, N. J. & Szilas, K., 8 Jan 2020, In : Precambrian Research. In press

    Research output: Contribution to journalArticle

  3. A window into an ancient backarc? The magmatic and metamorphic history of the Fraser Zone, Western Australia

    Glasson, K. J., Johnson, T. E., Kirkland, C. L., Gardiner, N. J., Clark, C., Blereau, E., Hartnady, M. I. H., Spaggiari, C. & Smithies, H., Apr 2019, In : Precambrian Research. 323, p. 55-69 15 p.

    Research output: Contribution to journalArticle

ID: 257273837

Top