Skip to content

Research at St Andrews

4pAB4. Strategies for weighting exposure in the development of acoustic criteria for marine mammals (vol 118, pg 2019, 2005)

Research output: Contribution to journalArticle

Author(s)

JH Miller, AE Bowles, BL Southall, RL Gentry, WT Ellison, JJ Finneran, CR Greene, D Kastak, DR Ketten, PL Tyack, PE Nachtigall, WJ Richardson, JA Thomas

School/Research organisations

Abstract

The Noise Exposure Criteria Group has been developing noise exposure criteria for marine mammals. Although the primary focus of the effort is development of criteria to prevent injury, the Group has also emphasized the development of exposure metrics that can be used to predict injury with accuracy and precision. Noise exposure metrics for humans have proven to be more effective when they account for psychophysical properties of the auditory system, particularly loudness perception. Usually noise is filtered using the A‐weighting function, an idealized curve based on the human 40‐phon equal loudness function. However, there are no empirical studies to show whether a comparable procedure for animals will improve predictions. The Noise Exposure Criteria Group panel has proposed to weight noise data by functions that admit sound throughout the frequency range of hearing in five marine mammal groupings—low frequency cetaceans (mysticetes), midfrequency cetaceans, high‐frequency cetaceans, pinnipeds in air, and pinnipeds in water. The algorithm for the functions depends only on the upper and lower frequency limits of hearing and does not differentially weight frequencies based on sensitivity within the range. This procedure is considered conservative. However, if the human case may be taken as a model, it is not likely to produce precise predictions. Empirical data are essential to finding better estimators of exposure.
Close

Details

Original languageEnglish
Pages (from-to)3962-3962
Number of pages1
JournalJournal of the Acoustical Society of America
Volume118
Issue number6
Publication statusPublished - Dec 2005

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A taxonomy for vocal learning

    Tyack, P. L., Jan 2020, In : Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 375, 1789, p. 1-10 10 p., 20180406.

    Research output: Contribution to journalReview article

  2. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants

    Goldbogen, J. A., Cade, D. E., Wisniewska, D. M., Potvin, J., Segre, P. S., Savoca, M. S., Hazen, E. L., Czapanskiy, M. F., Kahane-Rapport, S. R., DeRuiter, S. L., Gero, S., Tønnesen, P., Gough, W. T., Hanson, M. B., Holt, M. M., Jensen, F. H., Simon, M., Stimpert, A. K., Arranz, P., Johnston, D. W. & 7 others, Nowacek, D. P., Parks, S. E., Visser, F., Friedlaender, A. S., Tyack, P. L., Madsen, P. T. & Pyenson, N. D., 13 Dec 2019, In : Science. 366, 6471, p. 1367-1372 6 p.

    Research output: Contribution to journalArticle

  3. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus)

    Kragh, I. M., McHugh, K., Wells, R. S., Sayigh, L. S., Janik, V. M., Tyack, P. L. & Jensen, F. H., 3 Dec 2019, In : Journal of Experimental Biology. 222, 23, 11 p., jeb216606.

    Research output: Contribution to journalArticle

  4. Corrigendum: A response to scientific and societal needs for marine biological observations (Frontiers in Marine Science, (2019), 6, 10.3389/fmars.2019.00395)

    Bax, N. J., Miloslavich, P., Muller-Karger, F. E., Allain, V., Appeltans, W., Batten, S. D., Benedetti-Cecchi, L., Buttigieg, P. L., Chiba, S., Costa, D. P., Duffy, J. E., Dunn, D. C., Johnson, C. R., Kudela, R. M., Obura, D., Rebelo, L-M., Shin, Y-J., Simmons, S. E. & Tyack, P. L., 18 Oct 2019, In : Frontiers in Marine Science. 6, 1 p., 643.

    Research output: Contribution to journalComment/debate

Related by journal

  1. Predicting acoustic dose associated with marine mammal behavioural responses to sound as detected with fixed acoustic recorders and satellite tags

    von Benda-Beckmann, A. M., Wensveen, P. J., Prior, M., Ainslie, M. A., Hansen, R. R., Isojunno, S., Lam, F. P. A., Kvadsheim, P. H. & Miller, P. J. O., 20 Mar 2019, In : Journal of the Acoustical Society of America. 145, 3, p. 1401-1416 16 p.

    Research output: Contribution to journalArticle

  2. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays

    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L., May 2018, In : Journal of the Acoustical Society of America. 143, 5, p. 2980-2993 14 p.

    Research output: Contribution to journalArticle

ID: 49761185

Top