Skip to content

Research at St Andrews

A 60-second microwave-assisted synthesis of nickel foam and its application to the impregnation of porous scaffolds

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Enrique Ruiz-Trejo, Abul Kalam Azad, John Thomas Sirr Irvine

School/Research organisations

Abstract

A rapid and facile method to prepare nickel foam from nickel nitrate and glycine using a conventional microwave oven is presented. The foam, characterized by SEM, XRD-Rietveld, TG, magnetization measurements and BET contains mostly nickel metal (80 w%) and nickel oxide (20 w%); it exhibits pores in the sub micrometric and nanometric scale and consists of particles with an average diameter of 45-47 nm and BET surface of 15.9 gm-2. This microwave-assisted combustion synthesis is used to infiltrate porous ceramic scaffolds with nickel metal as a potential method to accelerate the fabrication of electrodes in solid oxide fuel cells and electrolysers. After repeated impregnation, the scaffolds of Ce0.9Gd0.1O2, saffil (high temperature insulating brick), La0.2Sr0.7TiO3 and BaCe0.5Zr0.3Y0.16Zn0.04O3-δ were black, exhibited electrical continuity and were easily lifted with a magnet. A comparative SEM study of the microstructure of the porous scaffolds with and without nickel is presented.

Close

Details

Original languageEnglish
JournalJournal of The Electrochemical Society
Volume162
Issue number3
Early online date30 Dec 2014
DOIs
Publication statusPublished - 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode

    Li, B., Irvine, J. T. S., Ni, J. & Ni, C., 15 Jan 2022, In: Applied Energy. 306, Part B, 118117.

    Research output: Contribution to journalArticlepeer-review

  2. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study

    Menezes, I., Capelo-Neto, J., Pestana, C. J., Clemente, A., Hui, J., Irvine, J. T. S., Nimal Gunaratne, H. Q., Robertson, P. K. J., Edwards, C., Gillanders, R. N., Turnbull, G. A. & Lawton, L. A., 15 Nov 2021, In: Journal of Environmental Management. 298, 11 p., 113519.

    Research output: Contribution to journalArticlepeer-review

  3. Iron-based electrode materials for solid oxide fuel cells and electrolysers

    Ni, C., Zhou, J., Zhang, Z., Li, S., Ni, J., Wu, K. & Irvine, J. T. S., 9 Nov 2021, (E-pub ahead of print) In: Energy & Environmental Science. Advance Article, 33 p.

    Research output: Contribution to journalReview articlepeer-review

  4. Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La0.20Sr0.25Ca0.45TiO3 anode supports

    Price, R., Savaniu, C. D., Cassidy, M. & Irvine, J. T. S., 1 Nov 2021, In: ECS Transactions. 103, 1, p. 1625-1639 15 p.

    Research output: Contribution to journalArticlepeer-review

  5. Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides

    Lee, J., Naden, A. B., Savaniu, C. D., Connor, P. A., Payne, J. L., Skelton, J., Gibbs, A., Hui, J., Parker, S. & Irvine, J. T. S., 7 Oct 2021, In: Advanced Energy Materials. 11, 37, 7 p., 2101337.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Examining operando generated Ni-based alloy nanomaterials as fuel electrodes in solid oxide cells

    Yue, X., Pukhova, A., He, S. & Zhang, N., 19 Oct 2021, In: Journal of The Electrochemical Society. 168, 10, 9 p., 104514.

    Research output: Contribution to journalArticlepeer-review

  2. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In: Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticlepeer-review

  3. Preparation and testing of metal/Ce0.80Gd0.20O1.90 (metal: Ni, Pd, Pt, Rh, Ru) co-impregnated La0.20Sr0.25Ca0.45TiO3 anode microstructures for solid oxide fuel cells

    Price, R., Cassidy, M., Grolig, J. G., Mai, A. & Irvine, J. T. S., 12 Mar 2019, In: Journal of The Electrochemical Society. 166, 4, p. F343-F349

    Research output: Contribution to journalArticlepeer-review

  4. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In: Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticlepeer-review

  5. La and Ca-doped A-site deficient strontium titanates anode for electrolyte supported direct methane solid oxide fuel cell

    Tiwari, P., Yue, X., Irvine, J. T. S. & Basu, S., 3 Aug 2017, In: Journal of The Electrochemical Society. 164, 9, p. F1030-F1036

    Research output: Contribution to journalArticlepeer-review

ID: 159990236

Top