Skip to content

Research at St Andrews

A Ce/Ru codoped SrFeO3−δ perovskite for a coke-resistant anode of a symmetrical solid oxide fuel cell

Research output: Contribution to journalArticlepeer-review

DOI

Open Access Status

  • Embargoed (until 24/11/21)

Author(s)

Bangxin Li, Shuai He, Jibiao Li, Xiangling Yue, John T.S. Irvine, Deti Xie, Jiupai Ni, Chengsheng Ni

School/Research organisations

Abstract

Employment of identical oxides for the cathode and anode in a symmetrical solid oxide fuel cell (SSOFC) is beneficial for decreasing the fabrication costs of a robust cell. Ce doping on the A site of SrFeO3 increased the structural stability in a reducing atmosphere, but ceria was found to exsolve from the perovskite during the cooling process in the air if the doping level reached 20 atom %. The additional doping of 5 atom % Ru in Sr0.8Ce0.2FeO3 on the Fe site could prevent the ceria segregation in air and induce the surface decomposition under fuel conditions for the formation of nanoscale SrO, CeO2, and Ru0. The SSOFC with Ce/Ru codoped SrFeO3 on a Sr- and Mg-doped LaGaO3 electrolyte showed a small Rp value (0.12 Ω cm2) when H2 and ambient air were used as fuel and oxidant, respectively. The peak power densities of 846 and 310 mW cm–2 were achieved at 800°C using H2 and C3H8 as fuel, respectively. The excellent coke resistance of the anode could be related to the simultaneous in situ exsolution of CeO2, SrO, and Ru0 nanoparticles.
Close

Details

Original languageEnglish
Pages (from-to)14398-14409
Number of pages12
JournalACS Catalysis
Volume10
Issue number24
Early online date24 Nov 2020
DOIs
Publication statusPublished - 18 Dec 2020

    Research areas

  • Ceria, Propane, Coke resistance, Metal exsolution, Oxide anode, Carbonaceous fuel, Catalysis, Solid oxide fuel cell (SOFC)

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Development of alternative fuel electrodes for upgrading biogas through CO2

    Zhang, N., Tian, Y., Yue, X., Sammes, L. & Irvine, J., 8 Sep 2019, Solid Oxide Fuel Cells 16, SOFC XVI. Eguchi, K. & Singhal, S. C. (eds.). Electrochemical Society, Inc., p. 2507-2515 9 p. (ECS Transactions; vol. 91, no. 1).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Chanthanumataporn, M., Hui, J., Yue, X., Kakinuma, K., Irvine, J. T. S. & Hanamura, K., 20 May 2019, In: Electrochimica Acta. 306, p. 159-166 8 p.

    Research output: Contribution to journalArticlepeer-review

  3. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R., 1 Nov 2018, In: Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticlepeer-review

  4. The reduction properties of M-doped (M=Zr, Gd) CeO2/YSZ scaffolds co-infiltrated with nickel

    Maher, R. C., Kerherve, G., Payne, D. J., Yue, X., Connor, P. A., Irvine, J. & Cohen, L. F., 11 Sep 2018, In: Energy Technology. 6, 10, p. 2045-2052

    Research output: Contribution to journalArticlepeer-review

  5. Tailoring SOFC electrode microstructures for improved performance

    Connor, P. A., Yue, X., Savaniu, C. D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D. J., Maher, R. C., Cohen, L. F., Tomov, R. I., Glowacki, B. A., Kumar, R. V. & Irvine, J. T. S., 16 Aug 2018, In: Advanced Energy Materials. 8, 23, 1800120.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Ultrarapid cerium(III)–NHC catalysts for high molar mass cyclic polylactide

    Kerr, R. W. F., Ewing, P., Raman, S. K., Smith, A. D., Williams, C. K. & Arnold, P. L., 15 Jan 2021, In: ACS Catalysis. 11, p. 1563-1569

    Research output: Contribution to journalArticlepeer-review

  2. Dissecting the mechanism of (R)-3-hydroxybutyrate dehydrogenase by kinetic isotope effects, protein crystallography, and computational chemistry

    G. Machado, T. F., Purg, M., McMahon, S., Read, B., Oehler, V., Åqvist, J., Gloster, T. & da Silva, R. G., 18 Dec 2020, In: ACS Catalysis. 10, 24, p. 15019–15032

    Research output: Contribution to journalArticlepeer-review

  3. Selective room-temperature hydrogenation of amides to amines and alcohols catalyzed by a ruthenium pincer complex and mechanistic insight

    Kar, S., Rauch, M., Kumar, A., Leitus, G., Ben-David, Y. & Milstein, D., 21 Apr 2020, In: ACS Catalysis. 10, p. 5511-5515 5 p.

    Research output: Contribution to journalArticlepeer-review

  4. Elementary steps in the formation of hydrocarbons from surface methoxy groups in HZSM-5 seen by synchrotron infrared microspectroscopy

    Minova, I., Matam, S., Greenaway, A., Catlow, R., Frogley, M., Cinque, G., Wright, P. A. & Howe, R., 17 Jun 2019, In: ACS Catalysis. 9, p. 6564-6570 7 p.

    Research output: Contribution to journalArticlepeer-review

ID: 271435743

Top