Skip to content

Research at St Andrews

A comparison of level set models in image segmentation

Research output: Contribution to journalArticlepeer-review

Author(s)

Roushanak Rahmat, David Harris-Birtill

School/Research organisations

Abstract

Image segmentation is one of the most important tasks in modern imaging applications, which leads to shape reconstruction, volume estimation, object detection and classification. One of the most popular active segmentation models are level set models which are used extensively as an important category of modern image segmentation technique with many different available models to tackle different image applications. Level sets are designed to overcome the topology problems during the evolution of curves in their process of segmentation while the previous algorithms cannot deal with this problem effectively. As a result there is often considerable investigation into the performance of several level set models for a given segmentation problem. It would therefore be helpful to know the characteristics of a range of level set models before applying to a given segmentation problem. In this paper we review a range of level set models and their application to image segmentation work and explain in detail their properties for practical use.
Close

Details

Original languageEnglish
Pages (from-to)2212-2221
Number of pages11
JournalIET Image Processing
Volume12
Issue number12
Early online date28 Aug 2018
DOIs
Publication statusPublished - 6 Dec 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Understanding computation time: a critical discussion of time as a computational performance metric

    Harris-Birtill, D. & Harris-Birtill, R., 3 Aug 2020, (Accepted/In press) Time in variance: the study of time. Parker, J., Harris, P. & Misztal, A. (eds.). Brill, Vol. 17. (The Study of Time).

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)peer-review

  2. Autofocus Net: Auto-focused 3D CNN for Brain Tumour Segmentation.

    Stefani, A., Rahmat, R. & Harris-Birtill, D. C. C., 8 Jul 2020, In Annual Conference on Medical Image Understanding and Analysis: Part of the Communications in Computer and Information Science book series (CCIS). Springer, Vol. 1248. p. 43-55 13 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)peer-review

  3. Paying per-label attention for multi-label extraction from radiology reports

    Schrempf, P., Watson, H., Mikhael, S., Pajak, M., Falis, M., Lisowska, A., Muir, K. W., Harris-Birtill, D. & O'Neil, A. Q., 2020, Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, iMIMIC 2020, Second International Workshop, MIL3iD 2020, and 5th International Workshop, LABELS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings. Cardoso, J., Van Nguyen, H., Heller, N., Henriques Abreu, P., Isgum, I., Silva, W., Cruz, R., Pereira Amorim, J., Patel, V., Roysam, B., Zhou, K., Jiang, S., Le, N., Luu, K., Sznitman, R., Cheplygina, V., Mateus, D., Trucco, E. & Abbasi, S. (eds.). Cham: Springer, p. 277-289 13 p. (Lecture Notes in Computer Science (including subseries Image Processing, Computer Vision, Pattern Recognition, and Graphics); vol. 12446 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Smart Homes for elderly to promote their health and wellbeing

    Pirzada, P., Wilde, A. G. & Harris-Birtill, D. C. C., 16 Sep 2019. 1 p.

    Research output: Contribution to conferencePosterpeer-review

  5. ‘Multiplicity embarrasses the eye’: The digital mapping of literary Edinburgh

    Loxley, J., Alex, B., Anderson, M., Hinrichs, U., Grover, C., Harris-Birtill, D., Thomson, T., Quigley, A. & Oberlander, J., 1 Jan 2018, The Routledge Companion to Spatial History. Taylor and Francis, p. 604-628 25 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

ID: 255606132

Top