Skip to content

Research at St Andrews

A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions

Research output: Contribution to journalArticle

Author(s)

Angelique Stephanou, Eleni Mylona, Mark Chaplain, Philippe Tracqui

School/Research organisations

Abstract

Cell migration is a highly integrated process where actin turnover, actomyosin contractility, and adhesion dynamics are all closely linked. In this paper, we propose a computational model investigating the coupling of these fundamental processes within the context of spontaneous (i.e. unstimulated) cell migration. In the unstimulated cell, membrane oscillations originating from the interaction between passive hydrostatic pressure and contractility are sufficient to lead to the formation of adhesion spots. Cell contractility then leads to the maturation of these adhesion spots into focal adhesions. Due to active actin polymerization, which reinforces protrusion at the leading edge, the traction force required for cell translocation can be generated. Computational simulations first show that the model hypotheses allow one to reproduce the main features of fibroblast cell migration and established results on the biphasic aspect of the cell speed as a function of adhesion strength. The model also demonstrates that certain temporal parameters, such as the adhesion proteins recycling time and adhesion lifetimes, influence cell motion patterns, particularly cell speed and persistence of the direction of migration. This study provides some elements, which allow a better understanding of spontaneous cell migration and enables a first glance at how an individual cell would potentially react once exposed to a stimulus. (C) 2008 Elsevier Ltd. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)701-716
Number of pages16
JournalJournal of Theoretical Biology
Volume253
Issue number4
DOIs
Publication statusPublished - 21 Aug 2008

    Research areas

  • Motility, Actin dynamics, Focal adhesion, Random migration, Integrative modeling, Lamellipodial contractions, Rho GTPases, Actomyosin, Deformations, Fibroblasts, Movement, Motion, Edge

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Learning-induced switching costs in a parasitoid can maintain diversity of host aphid phenotypes although biocontrol is destabilized under abiotic stress

    Preedy, K., Chaplain, M. A. J., Leybourne, D., Marion, G. & Karley, A., 30 Mar 2020, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  2. Bridging the gap between individual-based and continuum models of growing cell populations

    Chaplain, M. A. J., Lorenzi, T. & Macfarlane, F. R., Jan 2020, In : Journal of Mathematical Biology. 80, 1-2, p. 343-371

    Research output: Contribution to journalArticle

  3. Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy

    Stace, R. E. A., Stiehl, T., Chaplain, M. A. J., Marciniak-Czochra, A. & Lorenzi, T., 2020, In : Mathematical Modelling of Natural Phenomena. 15, 22 p., 14.

    Research output: Contribution to journalArticle

  4. Quantitative predictive modelling approaches to understanding rheumatoid arthritis: a brief review

    Macfarlane, F. R., Chaplain, M. A. J. & Eftimie, R., 27 Dec 2019, In : Cells. 9, 1, 26 p., 74.

    Research output: Contribution to journalReview article

Related by journal

  1. Journal of Theoretical Biology (Journal)

    Mark Andrew Joseph Chaplain (Editor)
    10 Apr 2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Consistency and identifiability of the polymorphism-aware phylogenetic models

    Borges, R. & Kosiol, C., 7 Feb 2020, In : Journal of Theoretical Biology. 486, p. 1-6 6 p., 110074.

    Research output: Contribution to journalArticle

  2. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In : Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Spatial-stochastic modelling of synthetic gene regulatory networks

    Macnamara, C. K., Mitchell, E. & Chaplain, M. A. J., 10 Feb 2019, In : Journal of Theoretical Biology. In press

    Research output: Contribution to journalArticle

  4. Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues

    Kursawe, J., Baker, R. E. & Fletcher, A. G., 14 Apr 2018, In : Journal of Theoretical Biology. 443, p. 66-81 16 p.

    Research output: Contribution to journalArticle

ID: 206426776

Top