Skip to content

Research at St Andrews

A fuel cell operating between room temperature and 250 degrees C based on a new phosphoric acid based composite electrolyte

Research output: Contribution to journalArticle

Author(s)

Rong Lan, Xiaoxiang Xu, Shanwen Tao, John T. S. Irvine

School/Research organisations

Abstract

A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H3PO4 with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H3PO4-based electrolyte is stable at 250 degrees C with addition of the hydrophilic inorganic compound BPO4 forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 degrees C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm(2) for a H-2/O-2 fuel cell has been achieved at 200 degrees C. The increase in operating temperature does not have significant benefit to the performance of a H-2/O-2 fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required. (C) 2010 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)6983-6987
Number of pages5
JournalJournal of Power Sources
Volume195
Issue number20
DOIs
Publication statusPublished - 15 Oct 2010

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In : Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticle

Related by journal

  1. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical solid oxide cell

    Tian, Y., Liu, Y., Jia, L., Naden, A., Chen, J., Chi, B., Pu, J., Irvine, J. T. S. & Li, J., 1 Nov 2020, In : Journal of Power Sources. 475, 228620.

    Research output: Contribution to journalArticle

  2. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  3. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Xu, H., Chen, B., Zhang, H., Tan, P., Yang, G., Irvine, J. T. S. & Ni, M., 1 Apr 2018, In : Journal of Power Sources. 382, p. 135-143 9 p.

    Research output: Contribution to journalArticle

  4. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R., 1 Nov 2018, In : Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticle

  5. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Li, S., Jiang, C., Liu, J., Tao, H., Meng, X., Connor, P., Hui, J., Wang, S., Ma, J. & Irvine, J. T. S., 15 Apr 2018, In : Journal of Power Sources. 383, p. 10-16 7 p.

    Research output: Contribution to journalArticle

ID: 38011066

Top