Skip to content

Research at St Andrews

A general model to optimise CuII labelling efficiency of double-histidine motifs for pulse dipolar EPR applications

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Abstract

Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the double histidine motif for EPR applications at sub-μM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, in dependence of pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.
Close

Details

Original languageEnglish
Pages (from-to)3810-3819
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume23
Issue number6
Early online date27 Jan 2021
DOIs
Publication statusPublished - 14 Feb 2021

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Advanced EPR spectroscopy for investigation of biomolecular binding events

    Wort, J., Oranges, M., Ackermann, K. & Bode, B. E., 2020, Electron Paramagnetic Resonance: Volume 27. Murphy, D., Chechik, V. & Bode, B. (eds.). Royal Society of Chemistry (RSC), Vol. 27. p. 47-73 27 p. (SPR - Electron Paramagnetic Resonance).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  2. Sub-micromolar pulse dipolar EPR spectroscopy reveals increasing CuII-labelling of double-histidine motifs with lower temperature

    Wort, J. L., Ackermann, K., Giannoulis, A., Stewart, A. J., Norman, D. G. & Bode, B. E., 19 Aug 2019, In: Angewandte Chemie - International Edition. 58, 34, p. 11681-11685 5 p.

    Research output: Contribution to journalArticlepeer-review

  3. Sub-micromolar pulse dipolar EPR spectroscopy reveals increasing CuII-labelling of double-histidine motifs with lower temperature

    Wort, J., Ackermann, K., Giannoulis, A., Stewart, A. J., Norman, D. & Bode, B. E., 19 Aug 2019, In: Angewandte Chemie. 131, 34, p. 11807-11811 6 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Physical Chemistry Chemical Physics (Journal)

    Finlay Morrison (Reviewer)

    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. A kinetic model of thin-film fluorescent sensors for strategies to enhance chemical selectivity

    Campbell, I. A. & Turnbull, G., 29 Apr 2021, In: Physical Chemistry Chemical Physics. Advance Article

    Research output: Contribution to journalArticlepeer-review

  2. A quinone based single-molecule switch as building block for molecular electronics

    Früchtl, H. A. & van Mourik, T., 21 Jan 2021, In: Physical Chemistry Chemical Physics. 23, 3, p. 1811-1814

    Research output: Contribution to journalArticlepeer-review

  3. The contribution of non-classical CHax∙∙∙OC hydrogen bonds to the anomeric effect in fluoro and oxa-methoxycyclohexanes

    Piscelli, B., O'Hagan, D. & Cormanich, R., 2 Mar 2021, In: Physical Chemistry Chemical Physics. 23, 10, p. 5845-5851

    Research output: Contribution to journalArticlepeer-review

  4. Effects of crystal size on methanol to hydrocarbon conversion over single crystals of ZSM-5 studied by synchrotron infrared microspectroscopy

    Minova, I. B., Matam, S. K., Greenaway, A., Catlow, C. R. A., Frogley, M. D., Cinque, G., Wright, P. A. & Howe, R. F., 14 Sep 2020, In: Physical chemistry chemical physics : PCCP. 22, 34, p. 18849-18859 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 272547808

Top