Skip to content

Research at St Andrews

A mathematical framework for modelling the metastatic spread of cancer

Research output: Contribution to journalArticle

Author(s)

Linnea Christin Franssen, Tommaso Lorenzi, Andrew Burgess, Mark Andrew Joseph Chaplain

School/Research organisations

Abstract

Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner—a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2.
Close

Details

Original languageEnglish
Number of pages46
JournalBulletin of Mathematical Biology
VolumeFirst Online
Early online date22 Mar 2019
DOIs
Publication statusE-pub ahead of print - 22 Mar 2019

    Research areas

  • Metastatic spread, Mathematical oncology, Tumour microenvironment, Individual-based model, Multigrid framework

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

    Lorenzi, T., Venkataraman, C., Lorz, A. & Chaplain, M. A. J., 14 Aug 2018, In : Journal of Theoretical Biology. 451, p. 101-110

    Research output: Contribution to journalArticle

Related by journal

  1. Computational approaches and analysis for a spatio-structural-temporal invasive carcinoma model

    Hodgkinson, A., Chaplain, M. A. J., Domschke, P. & Trucu, D., Apr 2018, In : Bulletin of Mathematical Biology. 80, 4, p. 701-737

    Research output: Contribution to journalArticle

  2. Computational modelling of cancer development and growth: modelling at multiple scales and multiscale modelling

    Szymanska, Z., Cytowski, M., Mitchell, E., Macnamara, C. K. & Chaplain, M. A. J., May 2018, In : Bulletin of Mathematical Biology. 80, 5, p. 1366-1403 38 p.

    Research output: Contribution to journalArticle

  3. Stability, convergence, and sensitivity analysis of the FBLM and the corresponding FEM

    Sfakianakis, N. & Brunk, A., Nov 2018, In : Bulletin of Mathematical Biology. 80, 11, p. 2789-2827 39 p.

    Research output: Contribution to journalArticle

ID: 258100363

Top