Skip to content

Research at St Andrews

A new FST method to uncover local adaptation using environmental variables

Research output: Contribution to journalArticle

Abstract

Genome-scan methods are used for screening genome-wide patterns of DNA polymorphism to detect signatures of positive selection. There are two main types of methods: (i) "outlier'' detection methods based on FST that detect loci with high differentiation compared to the rest of the genome, and (ii) environmental association methods that test the association between allele frequencies and environmental variables.

We present a new FST-based genome-scan method, BayeScEnv, which incorporates environmental information in the form of "environmental differentiation''. It is based on the F-model, but, as opposed to existing approaches, it considers two locus-specific effects; one due to divergent selection, and another due to various other processes different from local adaptation (e.g. range expansions, differences in mutation rates across loci or background selection). The method was developped in C++ and is avaible at http://github.com/devillemereuil/bayescenv.

A simulation study shows that our method has a much lower false positive rate than an existing FST-based method, BayeScan, under a wide range of demographic scenarios. Although it has lower power, it leads to a better compromise between power and false positive rate.

We apply our method to a human dataset and show that it can be used successfully to study local adaptation. We discuss its scope and compare it to other existing methods.

Close

Details

Original languageEnglish
Pages (from-to)1248-1258
Number of pages11
JournalMethods in Ecology and Evolution
Volume6
Issue number11
Early online date19 Jul 2015
DOIs
Publication statusPublished - Nov 2015

    Research areas

  • Local adaptation, Genetic differentiation, Bayesian approach

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Landscape, colonization and life history: their effects on genetic diversity in four sympatric species inhabiting a dendritic system

    Ruzzante, D., McCraken, G., Salisbury, S., Brewis, H., Keefe, D., Gaggiotti, O. E. & Perry, R., 2 Apr 2019, (Accepted/In press) In : Canadian Journal of Fisheries and Aquatic Sciences.

    Research output: Contribution to journalArticle

  2. Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Carroll, E. L., Alderman, R., Bannister, J. L., Bérube, M., Best, P. B., Boren, L., Baker, C. S., Constantine, R., Findlay, K., Harcourt, R., Lemaire, L., Palsbøll, P. J., Patenaude, N. J., Rowntree, V. J., Seger, J., Steel, D., Valenzuela, L. O., Watson, M. & Gaggiotti, O. E., 1 Jan 2019, In : Heredity. 122, 1, p. 53-68

    Research output: Contribution to journalArticle

  3. Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant Arabis alpina

    de Villemereuil, P., Mouterde, M., Gaggiotti, O. E. & Till-Buttraud, I., Sep 2018, In : Journal of Ecology. 106, 5, p. 1952–1971 20 p.

    Research output: Contribution to journalArticle

  4. Diversity from genes to ecosystems: a unifying framework to study variation across biological metrics and scales

    Gaggiotti, O. E., Chao, A., Peres-Neto, P., Chiu, C-H., Edwards, C., Fortin, M-J., Jost, L., Richards, C. & Selkoe, K., 1 Aug 2018, In : Evolutionary Applications. 11, 7, p. 1176-1193 18 p.

    Research output: Contribution to journalArticle

Related by journal

  1. A 2.6-gram sound and movement tag for studying the acoustic scene and kinematics of echolocating bats

    Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., Salles, A., Moss, C. F. & Madsen, P. T., Jan 2019, In : Methods in Ecology and Evolution. 10, 1, p. 48-58 11 p.

    Research output: Contribution to journalArticle

  2. Model selection with overdispersed distance sampling data

    Howe, E. J., Buckland, S. T., Després-Einspenner, M-L. & Kühl, H. S., Jan 2019, In : Methods in Ecology and Evolution. 10, 1, p. 38-47

    Research output: Contribution to journalArticle

  3. State-switching continuous-time correlated random walks

    Michelot, T. & Blackwell, P. G., 14 Feb 2019, In : Methods in Ecology and Evolution. Early View

    Research output: Contribution to journalArticle

  4. inlabru: an R package for Bayesian spatial modelling from ecological survey data

    Bachl, F. E., Lindgren, F., Borchers, D. L. & Illian, J. B., 21 Mar 2019, In : Methods in Ecology and Evolution. Early View, 7 p.

    Research output: Contribution to journalArticle

  5. Estimating effective detection area of static passive acoustic data loggers from playback experiments with cetacean vocalisations

    Nuuttila, H. K., Brundiers, K., Dähne, M., Koblitz, J. C., Thomas, L., Courtene-Jones, W., Evans, P. G. H., Turner, J. R., Bennell, J. D. & Hiddink, J. G., Dec 2018, In : Methods in Ecology and Evolution. 9, 12, p. 2362-2371

    Research output: Contribution to journalArticle

Related by journal

  1. Methods in Ecology and Evolution (Journal)

    Michael Blair Morrissey (Member of editorial board)
    1 Jan 20171 Jan 2020

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. Methods in Ecology and Evolution (Journal)

    Theoni Photopoulou (Editor)
    2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  3. Methods in Ecology and Evolution (Journal)

    Oscar Eduardo Gaggiotti (Member of editorial board)
    1 Sep 2014 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

ID: 192095619