Skip to content

Research at St Andrews

A new high-performance proton-conducting electrolyte for next-generation solid oxide fuel cells

Research output: Contribution to journalArticlepeer-review

Author(s)

Nikdalila Radenahmad, Ahmed Afif, Abdalla M. Abdalla, Muhammad Saqib, Jun-Young Park, Juliana Zaini, John Irvine, Jung Hyun Kim, Abul K. Azad

School/Research organisations

Abstract

Conventional solid oxide fuel cells (SOFCs) are operable at high temperatures (700 – 1,000 °C) with the most commonly used electrolyte, yttria‐stabilized zirconia (YSZ). SOFC R&D activities have thus been carried out to reduce the SOFC operating temperature. At intermediate temperatures (400 – 700 °C), barium cerate (BaCeO3) and barium zirconate (BaZrO3) are good candidates for use as proton‐conducting electrolytes due to their promising electrochemical characteristics. Here, we combined two widely studied proton‐conducting materials with two dopants and discovered an attractive composition for the investigation of electrochemical behaviors. Ba0.9Sr0.1Ce0.5Zr0.35Y0.1Sm0.05O3‐δδ(BSCZYSm), a perovskite‐type polycrystalline material, has shown very promising properties to be used as proton‐conducting electrolytes at intermediate temperature range. BSCZYSm shows a high proton conductivity of 4.167×10−3 S cm−1 in a wet argon atmosphere and peak power density of 581.7 mW cm−2 in Ni‐BSCZYSm | BSCZYSm | BSCF cell arrangement at 700 °C, which is one of the highest in comparison to proton‐conducting electrolyte‐based fuel cells reported till now.
Close

Details

Original languageEnglish
Article number2000486
JournalEnergy Technology
VolumeEarly View
Early online date24 Jul 2020
DOIs
Publication statusE-pub ahead of print - 24 Jul 2020

    Research areas

  • Electrochemical performance, Power density, Proton-conducting electrolyte, Solid oxide fuel cells, Structural analysis

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study

    Menezes, I., Capelo-Neto, J., Pestana, C. J., Clemente, A., Hui, J., Irvine, J. T. S., Nimal Gunaratne, H. Q., Robertson, P. K. J., Edwards, C., Gillanders, R. N., Turnbull, G. A. & Lawton, L. A., 15 Nov 2021, In: Journal of Environmental Management. 298, 113519.

    Research output: Contribution to journalArticlepeer-review

  2. Fabrication and characterization of a tubular solid oxide fuel cell with impregnated perovskite electrodes

    Nowicki, K. M., Wang, M. & Irvine, J. T. S., 1 Nov 2021, In: ECS Transactions. 103, 1, p. 93-103 11 p.

    Research output: Contribution to journalArticlepeer-review

  3. Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La0.20Sr0.25Ca0.45TiO3 anode supports

    Price, R., Savaniu, C. D., Cassidy, M. & Irvine, J. T. S., 1 Nov 2021, In: ECS Transactions. 103, 1, p. 1625-1639 15 p.

    Research output: Contribution to journalArticlepeer-review

  4. Development of the Ca/FeS2 chemistry for thermal batteries

    Dickson, S. A. M., Gover, R. K. B. & Irvine, J. T. S., 9 Sep 2021, (E-pub ahead of print) In: Chemistry of Materials. 12 p.

    Research output: Contribution to journalArticlepeer-review

  5. Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides

    Lee, J., Naden, A. B., Savaniu, C. D., Connor, P. A., Payne, J. L., Skelton, J., Gibbs, A., Hui, J., Parker, S. & Irvine, J. T. S., 26 Aug 2021, (E-pub ahead of print) In: Advanced Energy Materials. Early View, 7 p., 2101337.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. The reduction properties of M-doped (M=Zr, Gd) CeO2/YSZ scaffolds co-infiltrated with nickel

    Maher, R. C., Kerherve, G., Payne, D. J., Yue, X., Connor, P. A., Irvine, J. & Cohen, L. F., 11 Sep 2018, (E-pub ahead of print) In: Energy Technology. 6, 10, p. 2045-2052

    Research output: Contribution to journalArticlepeer-review

  2. Role of nitrogen-doped carbon nanofibers inside polymer membranes for enhancing fuel cell performance

    Jang, J., Lee, J. G., Hwang, H. J., Kwon, O., Jeon, O. S., Ji, Y. & Shul, Y. G., 14 Jun 2018, In: Energy Technology. 6, 6, p. 998-1002 5 p.

    Research output: Contribution to journalArticlepeer-review

  3. Organic semiconductor g-C3N4 modified TiO2 nanotube arrays for enhanced photoelectrochemical performance in wastewater treatment

    Liu, L., Zhang, G., Irvine, J. T. S. & Wu, Y., Jul 2015, In: Energy Technology. 3, p. 982-988

    Research output: Contribution to journalArticlepeer-review

ID: 269174148

Top