Skip to content

Research at St Andrews

A new technique to measure spatial relationships within groups of free-ranging coastal cetaceans

Research output: Contribution to journalArticle

Author(s)

C Denardo, M Dougherty, G Hastie, R Leaper, B Wilson, P M Thompson

School/Research organisations

Abstract

1. The development and calibration of a land-based technique to measure inter-animal spacing in free-ranging coastal cetaceans is described here. The technique was developed to study the behaviour of killer whales Orcinus orca in Norway.

2. A theodolite was used to measure the surfacing location of one reference individual while simultaneous video recordings of the whole group were made. Digitized video frames were then used to estimate the locations of all individuals in the video frame relative to the reference animal.

3. The technique was calibrated using a line of towed buoys with known separations. Estimated inter-buoy distances were compared with actual values to calculate errors. There was no observable bias in measurements, with a mean error of -0.014 m (n = 304, SD = 0.880). At ranges up to 2 km from the observation site, 95% of measurements were accurate to within 1.7 m.

4. The accuracy of the measurement system was characterized with a set of Monte Carlo simulations. Simulations were run at offshore ranges from 100 m to 2000 m, with random perturbations applied to all variables. Errors in inter-animal distances for n = 16 whales were estimated using 10 000 simulation runs for every range value. The results from the simulations agreed with experimental findings. The results showed no bias in inter-animal distance measurements, with an overall mean error of 0.0864 m.

5. The results indicate that this technique is suitable for studies on a variety of coastal cetacean populations. It provides a new tool for quantitative studies on spatial behaviour of cetaceans, and will help underpin management efforts to monitor effects of anthropogenic disturbance. With modification, the technique might also be applicable to other coastal vertebrates where inter-organism distances are required.

Close

Details

Original languageEnglish
Pages (from-to)888-895
Number of pages8
JournalJournal of Applied Ecology
Volume38
Issue number4
Publication statusPublished - Aug 2001

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Effects of impulsive noise on marine mammals: investigating range-dependent risk

    Hastie, G., Merchant, N., Goetz, T., Russell, D. J. F., Thompson, P. & Janik, V. M., 12 Jun 2019, In : Ecological Applications. Early View, 10 p.

    Research output: Contribution to journalArticle

  2. Empirical determination of severe trauma in seals from collisions with tidal turbine blades

    Onoufriou, J., Brownlow, A., Moss, S., Hastie, G. & Thompson, D., 14 May 2019, In : Journal of Applied Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  3. Harbour seals avoid tidal turbine noise: implications for collision risk

    Hastie, G. D., Russell, D. J. F., Lepper, P., Elliott, J., Wilson, B., Benjamins, S. & Thompson, D., Mar 2018, In : Journal of Applied Ecology. 55, 2, p. 684-693 10 p.

    Research output: Contribution to journalArticle

  4. Seals and shipping: quantifying population risk and individual exposure to vessel noise

    Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L. & Thompson, D., Dec 2017, In : Journal of Applied Ecology. 54, 6, p. 1930-1940

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Applied Ecology (Journal)

    Jason Matthiopoulos (Editor)
    2007 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Empirical determination of severe trauma in seals from collisions with tidal turbine blades

    Onoufriou, J., Brownlow, A., Moss, S., Hastie, G. & Thompson, D., 14 May 2019, In : Journal of Applied Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  2. Harbour seals avoid tidal turbine noise: implications for collision risk

    Hastie, G. D., Russell, D. J. F., Lepper, P., Elliott, J., Wilson, B., Benjamins, S. & Thompson, D., Mar 2018, In : Journal of Applied Ecology. 55, 2, p. 684-693 10 p.

    Research output: Contribution to journalArticle

  3. Marine mammals and sonar: dose-response studies, the risk-disturbance hypothesis and the role of exposure context

    Harris, C. M., Thomas, L., Falcone, E., Hildebrand, J., Houser, D., Kvadsheim, P., Lam, F-P. A., Miller, P., Moretti, D. J., Read, A., Slabbekoorn, H., Southall, B. L., Tyack, P. L., Wartzok, D. & Janik, V. M., Jan 2018, In : Journal of Applied Ecology. 55, 1, p. 396-404

    Research output: Contribution to journalReview article

  4. Counting chirps: acoustic monitoring of cryptic frogs

    Measey, G. J., Stevenson, B. C., Scott, T., Altwegg, R. & Borchers, D. L., Jun 2017, In : Journal of Applied Ecology. 54, 3, p. 894-902 9 p.

    Research output: Contribution to journalArticle

  5. Seals and shipping: quantifying population risk and individual exposure to vessel noise

    Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L. & Thompson, D., Dec 2017, In : Journal of Applied Ecology. 54, 6, p. 1930-1940

    Research output: Contribution to journalArticle

ID: 35078669