Skip to content

Research at St Andrews

A parametric spectral model for texture-based salience

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

Kasim Terzić, Sai Krishna, J. M.H. Du Buf

School/Research organisations

Abstract

We present a novel saliency mechanism based on texture. Local texture at each pixel is characterised by the 2D spectrum obtained from oriented Gabor filters. We then apply a parametric model and describe the texture at each pixel by a combination of two 1D Gaussian approximations. This results in a simple model which consists of only four parameters. These four parameters are then used as feature channels and standard Difference-of-Gaussian blob detection is applied in order to detect salient areas in the image, similar to the Itti and Koch model. Finally, a diffusion process is used to sharpen the resulting regions. Evaluation on a large saliency dataset shows a significant improvement of our method over the baseline Itti and Koch model.

Close

Details

Original languageEnglish
Title of host publicationPattern Recognition
Subtitle of host publication37th German Conference, GCPR 2015, Aachen, Germany, October 7-10, 2015, Proceedings
EditorsJuergen Gall, Peter Gehler, Bastian Leibe
Place of PublicationCham
PublisherSpringer
Pages331-342
Number of pages12
ISBN (Electronic)9783319249476
ISBN (Print)9783319249469
DOIs
Publication statusPublished - 2015
Event37th German Conference on Pattern Recognition, GCPR 2015 - Aachen, Germany
Duration: 7 Oct 201510 Oct 2015
Conference number: 37
http://gcpr2015.rwth-aachen.de/

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9358
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference37th German Conference on Pattern Recognition, GCPR 2015
Abbreviated titleGCPR
CountryGermany
CityAachen
Period7/10/1510/10/15
Internet address

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Supervisor recommendation tool for Computer Science projects

    Zemaityte, G. & Terzic, K., 9 Jan 2019, Proceedings of the 3rd Conference on Computing Education Practice (CEP '19) . New York: ACM, 4 p. 1

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. BINK: Biological Binary Keypoint Descriptor

    Saleiro, M., Terzić, K., Rodrigues, J. M. F. & du Buf, J. M. H., Dec 2017, In : BioSystems. 162, p. 147-156

    Research output: Contribution to journalArticle

  3. Texture features for object salience

    Terzić, K., Krishna, S. & du Buf, J. M. H., Nov 2017, In : Image and Vision Computing. 67, p. 43-51

    Research output: Contribution to journalArticle

  4. Interpretable feature maps for robot attention

    Terzić, K. & du Buf, J. M. H., 2017, Universal Access in Human–Computer Interaction. Design and Development Approaches and Methods: 11th International Conference, UAHCI 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017, Proceedings, Part I. Antona, M. & Stephanidis, C. (eds.). Cham: Springer, p. 456-467 12 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10277).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  5. Methods for reducing visual discomfort in stereoscopic 3D: a review

    Terzić, K. & Hansard, M., Sep 2016, In : Signal Processing: Image Communication. 47, p. 402-416 15 p.

    Research output: Contribution to journalReview article

ID: 255500533

Top