Skip to content

Research at St Andrews

A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Robin J. Svensson, Rob E. Aarnoutse, Andreas H Diacon, Rodney Dawson, Stephen H. Gillespie, Martin J. Boeree, Ulrika S. H. Simonsson

School/Research organisations

Abstract

Accumulating evidence suggest that increasing doses of rifampicin may shorten tuberculosis treatment. The PanACEA HIGHRIF1 trial assessed safety, pharmacokinetics and anti-mycobacterial activity of rifampicin at doses up to 40 mg/kg. Eighty-three pulmonary tuberculosis patients received 10, 20, 25, 30, 35 or 40 mg/kg rifampicin daily over 2 weeks, supplemented with standard doses of isoniazid, pyrazinamide and ethambutol in the second week.
This study aimed at characterizing rifampicin pharmacokinetics observed in HIGHRIF1 using non-linear mixed effects modeling. The final population pharmacokinetic model included an enzyme turn-over model accounting for time-dependent elimination due to auto-induction, concentration-dependent clearance and dose-dependent bioavailability. The relationship between clearance and concentration was characterized by a Michaelis-Menten relationship. The relationship between bioavailability and dose was described using an Emax relationship. The model will be key in determining exposure-response relationships for rifampicin and should be considered when designing future trials and when treating future patients with high dose rifampicin.
Close

Details

Original languageEnglish
JournalClinical Pharmacology & Therapeutics
VolumeEarly View
Early online date7 Aug 2017
DOIs
StateE-pub ahead of print - 7 Aug 2017

    Research areas

  • Rifampin, Tuberculosis, Pharmacokinetics, Modeling, Nonlinear models

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Pseudomonas aeruginosa intensive care unit outbreak: winnowing of transmissions with molecular and genomic typing

    Parcell, B. J., Oravcova, K., Pinheiro, M., Holden, M. T. G., Phillips, G., Turton, J. F. & Gillespie, S. H. 8 Dec 2017 In : Journal of Hospital Infection. In press

    Research output: Contribution to journalArticle

  2. Project Sanitarium: playing tuberculosis to its end game

    Donald, I., Meyer, K., Brengman, J., Gillespie, S. H. & Bowness, R. Dec 2017 In : Journal of Computing in Higher Education. 29, 3, p. 599-617 19 p.

    Research output: Contribution to journalArticle

  3. A comparison of liquid and solid culture for determining relapse and durable cure in phase III TB trials for new regimens

    Phillips, P. P. J., Mendel, C. M., Nunn, A. J., McHugh, T. D., Crook, A. M., Hunt, R., Bateson, A. & Gillespie, S. H. 24 Nov 2017 In : BMC Medicine. 15, 9 p., 207

    Research output: Contribution to journalArticle

  4. Pharmacokinetics, tolerability, and bacteriological response of rifampin administered at 600, 900, and 1,200 milligrams daily in patients with pulmonary tuberculosis

    Aarnoutse, R. E., Kibiki, G. S., Reither, K., Semvua, H. H., Haraka, F., Mtabho, C. M., Mpagama, S. G., van den Boogaard, J., Sumari-de Boer, I. M., Magis-Escurra, C., Wattenberg, M., Logger, J. G. M., te Brake, L. H. M., Hoelscher, M., Gillespie, S. H., Colbers, A., Phillips, P. P. J., Plemper van Balen, G., Boeree, M. J. & PanACEA Consortium 1 Nov 2017 In : Antimicrobial Agents and Chemotherapy. 61, 11, e01054-17

    Research output: Contribution to journalArticle

  5. Spot sputum samples are at least as good as early morning samples for identifying Mycobacterium tuberculosis

    Murphy, M. E., Phillips, P. P. J., Mendel, C. M., Bongard, E., Bateson, A. L. C., Hunt, R., Murthy, S., Singh, K. P., Brown, M., Crook, A. M., Nunn, A. J., Meredith, S. K., Lipman, M., McHugh, T. D., Gillespie, S. H. & on behalf of the REMoxTB Consortium 27 Oct 2017 In : BMC Medicine. 15, 10 p., 192

    Research output: Contribution to journalArticle

ID: 250351811