Skip to content

Research at St Andrews

A principled machine learning framework improves accuracy of stage II colorectal cancer prognosis

Research output: Contribution to journalArticle


Accurate prognosis is fundamental in planning an appropriate therapy for cancer patients. Consequent to the heterogeneity of the disease, intra- and inter-pathologist variability, and the inherent limitations of current pathological reporting systems, patient outcome varies considerably within similarly staged patient cohorts. This is particularly true when classifying stage IIcolorectal cancer patients using the current TNM guidelines. The aim of the present work is to address this problem through the use of machine learning. In particular, we introduce a novel, data driven framework which makes use of a large number of diverse types of features, readily collected from immunofluorescence imagery. Its outstanding performance in predictingmortality in stage II patients (AUROC= 0:94), exceeds that of current clinical guidelines such as pT stage (AUROC= 0:65), and is demonstrated on a cohort of 173 colorectal cancer patients.


Original languageEnglish
Article number52
Number of pages9
Journalnpj Digital Medicine
Publication statusPublished - 2 Oct 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Colorectal cancer outcome prediction from H&E whole slide images using machine learning and automatically inferred phenotype profiles

    Yue, X., Dimitriou, N., Caie, P., Harrison, D. & Arandjelovic, O., 18 Mar 2019, Proceedings of 11th International Conference on Bioinformatics and Computational Biology, BICOB 2019: Honolulu; United States; 18 March 2019 through 20 March 2019. Eulenstein, O., Al-Mubaid, H. & Ding, Q. (eds.). EasyChair, p. 139-127 11 p. (EPiC Series in Computing; vol. 60).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis

    Brieu, N., Gavriel, C., Nearchou, I. P., Harrison, D. J., Schmidt, G. & Caie, P. D., 26 Mar 2019, In : Scientific Reports. 9, 5174.

    Research output: Contribution to journalArticle

ID: 255731693