Skip to content

Research at St Andrews

Absolute abundance estimates from shallow water baited underwater camera surveys; a stochastic modelling approach tested against field data

Research output: Contribution to journalArticle

Author(s)

K.M. Dunlop, G.D. Ruxton, E.M. Scott, D.M. Bailey

School/Research organisations

Abstract

Baited underwater cameras are becoming a popular tool to monitor fish and invertebrate populations within protected and inshore environments where trawl surveys are unsuitable. Modelling the arrival times of deep-sea grenadiers using an inverse square relationship has enabled abundance estimates, comparable to those from bottom trawl surveys, to be gathered from deep-sea baited camera surveys. Baited underwater camera systems in the shallow water environments are however, currently limited to relative comparisons of assemblages based on simple metrics such as MaxN (maximum number of fish seen at any one time). This study describes a stochastic simulation approach used to model the behaviour of fish and invertebrates around a BUC system to enable absolute abundance estimates to be generated from arrival patterns. Species-specific models were developed for the tropical reef fishes the black tip grouper (Epinephelus fasciatus) and moray eel (Gymnothorax spp.) and the Antarctic scavengers; the asteroid (Odontaster validus) and the nemertean worm (Parbolasia corrugatus). A sensitivity analysis explored the impact of input parameters on the arrival patterns (MaxN, time to the arrival of the first individual and the time to reach MaxN) for each species generated by the model. Sensitivity analysis showed a particularly strong link between MaxN and abundance indicating that this model could be used to generate absolute abundances from existing or future MaxN data. It in effect allows the slope of the MaxN vs. abundance relationship to be estimated. Arrival patterns generated by each model were used to estimate population abundance for the focal species and these estimates were compared to data from underwater visual census transects. Using a Bland-Altman analysis, baited underwater camera data processed using this model were shown to generate absolute abundance estimates that were comparable to underwater visual census data.

Close

Details

Original languageEnglish
Pages (from-to)126-134
Number of pages9
JournalJournal of Experimental Marine Biology and Ecology
Volume472
Early online date25 Jul 2015
DOIs
Publication statusPublished - Nov 2015

    Research areas

  • Baited underwater cameras, Modelling, Fish and invertebrate surveys, Underwater visual census

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Birdsbesafe® collar cover reduces bird predation by domestic cats (Felis catus)

    Pemberton, C. & Ruxton, G. D., 8 Oct 2019, In : Journal of Zoology. Early View

    Research output: Contribution to journalArticle

  2. Secondary dispersal mechanisms of winged seeds: a review

    der Weduwen, D. & Ruxton, G. D., Oct 2019, In : Biological Reviews. 94, 5, p. 1830-1838 9 p.

    Research output: Contribution to journalReview article

  3. Deconstructing collective building in social insects: implications for ecological adaptation and evolution

    Invernizzi, E. & Ruxton, G. D., 8 Aug 2019, In : Insectes Sociaux. First Online, 12 p.

    Research output: Contribution to journalReview article

  4. The Hermans–Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology

    Landler, L., Ruxton, G. D. & Malkemper, E. P., 7 Aug 2019, In : BMC Ecology. 19, 8 p., 30.

    Research output: Contribution to journalArticle

  5. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In : Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticle

Related by journal

  1. The influence of water motion on the growth rate of the kelp Laminaria digitata

    Kregting, L., Blight, A. J., Elsäßer, B. & Savidge, G., May 2016, In : Journal of Experimental Marine Biology and Ecology. 478, p. 86-95 10 p.

    Research output: Contribution to journalArticle

  2. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification

    Garrard, S., Gambi, M. C., Scipione, M. B., Lorenti, M., Zupo, V., Paterson, D. M. & Buia, M. C., 2014, In : Journal of Experimental Marine Biology and Ecology. 461, p. 31-38 8 p.

    Research output: Contribution to journalArticle

  3. Modelling harbour seal habitat by combining data from multiple tracking systems

    Bailey, H., Hammond, P. S. & Thompson, P. M., Jan 2014, In : Journal of Experimental Marine Biology and Ecology. 450, p. 30–39

    Research output: Contribution to journalArticle

  4. The identification and management of pain, suffering and distress in cephalopods, including anaesthesia, analgesia and humane killing

    Andrews, P. L. R., Darmaillacq, A-S., Dennison, N., Gleadall, I. G., Hawkins, P., Messenger, J. B., Osorio, D., Smith, V. J. & Smith, J. A., Sep 2013, In : Journal of Experimental Marine Biology and Ecology. 447, p. 46-64 18 p.

    Research output: Contribution to journalArticle

ID: 209172687

Top