Skip to content

Research at St Andrews

Acceleration-triggered animal-borne videos show a dominance of fish in the diet of female northern elephant seals

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 28/02/21)

Author(s)

Kaori Yoshino, Akinori Takahashi, Taiki Adachi, Daniel P. Costa, Patrick W. Robinson, Sarah H. Peterson, Luis A. Hückstädt, Rachel R. Holser, Yasuhiko Naito

School/Research organisations

Abstract

Knowledge of the diet of marine mammals is fundamental to understanding their role in marine ecosystems and response to environmental change. Recently, animal-borne video cameras have revealed the diet of marine mammals that make short foraging trips. However, novel approaches that allocate video time to target prey capture events is required to obtain diet information for species that make long foraging trips over great distances. We combined satellite telemetry and depth recorders with newly developed date-/time-, depth- and acceleration-triggered animal-borne video cameras to examine the diet of female northern elephant seals during their foraging migrations across the eastern North Pacific. We obtained 48.2 h of underwater video, from cameras mounted on the head (n=12) and jaw (n=3) of seals. Fish dominated the diet (78% of 697 prey items recorded) across all foraging locations (range: 37-55°N, 122-152°W), diving depths (range: 238-1167 m) and water temperatures (range: 3.2-7.4°C), while squid comprised only 7% of the diet. Identified prey included fish such as myctophids, Merluccius sp. and Icosteus aenigmaticus, and squid such as Histioteuthis sp., Octopoteuthis sp. and Taningia danae Our results corroborate fatty acid analysis, which also found that fish are more important in the diet, and are in contrast to stomach content analyses that found cephalopods to be the most important component of the diet. Our work shows that in situ video observation is a useful method for studying the at-sea diet of long-ranging marine predators.

Close

Details

Original languageEnglish
Article numberjeb212936
Number of pages9
JournalJournal of Experimental Biology
Volume223
Issue number5
DOIs
Publication statusPublished - 28 Feb 2020

    Research areas

  • Bio-logging, Diving behavior, Foraging, Marine mammal, Mesopelagic zone

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Dynamic biosonar adjustment strategies in deep-diving Risso's dolphins driven partly by prey evasion

    Jensen, F. H., Keller, O. A., Tyack, P. L. & Visser, F., Feb 2020, In : Journal of Experimental Biology. 223, 9 p., jeb216283.

    Research output: Contribution to journalArticle

  2. Energy compensation and received echo level dynamics in constant-frequency bats during active target approaches

    Stidsholt, L., Müller, R., Beedholm, K., Ma, H., Johnson, M. & Madsen, P. T., 28 Jan 2020, In : Journal of Experimental Biology. 223, 2, 9 p., jeb217109.

    Research output: Contribution to journalArticle

  3. Flash and grab: deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey

    Goulet, P., Guinet, C., Campagna, C., Campagna, J., Tyack, P. L. & Johnson, M., 19 May 2020, In : Journal of Experimental Biology. 223, 10, 11 p., jeb.222810.

    Research output: Contribution to journalArticle

  4. The startle reflex in echolocating odontocetes: basic physiology and practical implications

    Götz, T., Pacini, A. F., Nachtigall, P. & Janik, V. M., 12 Mar 2020, In : Journal of Experimental Biology. 223, 12 p., jeb208470.

    Research output: Contribution to journalArticle

ID: 266954676

Top