Skip to content

Research at St Andrews

Adhesion and Percolation Parameters in Two Dimensional Pd-LSCM Composites for SOFC Anode Current Collection

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Samir Boulfrad, Mark Cassidy, John T. S. Irvine

School/Research organisations

Abstract

This paper is concerned with palladium-(La0.75Sr0.25)(0.97)Cr0.5Mn0.5O3 (LSCM) composite current collectors for solid oxide fuel cells (SOFCs); the composites, which are in a 2D configuration (thickness of about 8-10 mu m) are deposited upon an LSCM electrode layer on top of an yttria zirconia electrolyte substrate. The influence of the LSCM particle size on the adhesion between palladium and LSCM are reported and discussed. Compositions using four different LSCM particle sizes (0.21, 0.49, 0.64, and 0.81 mu m) with sintered Pd particle sizes approaching 10 mu m are investigated. The best bonding is obtained when smaller particles are used. The electrical dc conductivity of the composite is reported as a function of the palladium volume fraction for all used LSCM particle sizes. The measured experimental values present typical insulating-conductive percolation. However, the transition occurs at similar to 33% of the conductive phase, that is, a lower percentage than for 2D ideal systems and a higher percentage than for 3D ideal systems. This is consistent with lower-dimension percolation for a system of large-grained conductors and small-grained insulators. The general effective media (GEM) equation is used to fit the experimental data, and the two main parameters (the threshold point phi(c) and the exponent t) are defined.

Close

Details

Original languageEnglish
Pages (from-to)861-866
Number of pages6
JournalAdvanced Functional Materials
Volume20
Issue number5
DOIs
Publication statusPublished - 9 Mar 2010

    Research areas

  • INTERFACES, CONDUCTIVITY, 1ST-PRINCIPLES, DELAMINATION, TEMPERATURE, IMPEDANCE, TRANSPORT, SPECTRA, TENSILE, CELLS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode

    Li, B., Irvine, J. T. S., Ni, J. & Ni, C., 15 Jan 2022, In: Applied Energy. 306, Part B, 118117.

    Research output: Contribution to journalArticlepeer-review

  2. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study

    Menezes, I., Capelo-Neto, J., Pestana, C. J., Clemente, A., Hui, J., Irvine, J. T. S., Nimal Gunaratne, H. Q., Robertson, P. K. J., Edwards, C., Gillanders, R. N., Turnbull, G. A. & Lawton, L. A., 15 Nov 2021, In: Journal of Environmental Management. 298, 11 p., 113519.

    Research output: Contribution to journalArticlepeer-review

  3. Iron-based electrode materials for solid oxide fuel cells and electrolysers

    Ni, C., Zhou, J., Zhang, Z., Li, S., Ni, J., Wu, K. & Irvine, J. T. S., 9 Nov 2021, (E-pub ahead of print) In: Energy & Environmental Science. Advance Article, 33 p.

    Research output: Contribution to journalReview articlepeer-review

  4. Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La0.20Sr0.25Ca0.45TiO3 anode supports

    Price, R., Savaniu, C. D., Cassidy, M. & Irvine, J. T. S., 1 Nov 2021, In: ECS Transactions. 103, 1, p. 1625-1639 15 p.

    Research output: Contribution to journalArticlepeer-review

  5. Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides

    Lee, J., Naden, A. B., Savaniu, C. D., Connor, P. A., Payne, J. L., Skelton, J., Gibbs, A., Hui, J., Parker, S. & Irvine, J. T. S., 7 Oct 2021, In: Advanced Energy Materials. 11, 37, 7 p., 2101337.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Incommensurate-commensurate transition in the geometric ferroelectric LaTaO4

    Howieson, G. W., Wu, S., Gibbs, A. S., Zhou, W., Scott, J. F. & Morrison, F. D., 4 Nov 2020, In: Advanced Functional Materials. 30, 45, 10 p., 2004667.

    Research output: Contribution to journalArticlepeer-review

  2. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom doped nanographenes: recent advances and prospects for organic light-emitting diodes

    Madayanad Suresh, S., Hall, D., Beljonne, D., Olivier, Y. & Zysman-Colman, E., 12 Aug 2020, In: Advanced Functional Materials. 30, 33, 25 p., 1908677.

    Research output: Contribution to journalReview articlepeer-review

  3. Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells

    Schubert, M., Collins, B. A., Mangold, H., Howard, I. A., Schindler, W., Vandewal, K., Roland, S., Behrends, J., Kraffert, F., Steyrleuthner, R., Chen, Z., Fostiropoulos, K., Bittl, R., Salleo, A., Facchetti, A., Laquai, F., Ade, H. W. & Neher, D., 9 Jul 2020, In: Advanced Functional Materials. 24, 26, p. 4068-4081 14 p.

    Research output: Contribution to journalArticlepeer-review

  4. Homogeneous doping of substitutional nitrogen/carbon in TiO2 plates for visible light photocatalytic water oxidation

    Wu, T., Niu, P., Yang, Y., Yin, L-C., Tan, J., Zhu, H., Irvine, J. T. S., Wang, L., Liu, G. & Cheng, H-M., 21 Jun 2019, In: Advanced Functional Materials. 29, 25, 1901943.

    Research output: Contribution to journalArticlepeer-review

  5. Monothiatruxene-based, solution-processed green, sky-blue, and deep-blue organic light-emitting diodes with efficiencies beyond 5% limit

    Maciejczyk, M. R., Zhang, S., Hedley, G. J., Robertson, N., Samuel, I. D. W. & Pietraszkiewicz, M., 8 Feb 2019, In: Advanced Functional Materials. 29, 6, 13 p., 1807572.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Advanced Functional Materials (Journal)

    David John Cole-Hamilton (Editor)

    19911999

    Activity: Publication peer-review and editorial work typesEditor of research journal

ID: 6326215

Top