Skip to content

Research at St Andrews

Advanced anodes for high-temperature fuel cells

Research output: Contribution to journalArticle

DOI

Author(s)

A Atkinson, S Barnett, RJ Gorte, John Thomas Sirr Irvine, AJ McEvoy, M Mogensen, SC Singhal, J Vohs

School/Research organisations

Abstract

Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.

Close

Details

Original languageEnglish
Pages (from-to)17-27
Number of pages11
JournalNature Materials
Volume3
Issue number1
DOIs
Publication statusPublished - Jan 2004

    Research areas

  • DIRECT-OXIDATION, DOPED CERIA, ELECTRICAL-PROPERTIES, CARBON DEPOSITION, POTENTIAL ANODE, METHANE, SOFC, CATALYSTS, ELECTROLYTE, STABILITIES

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  3. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  4. Nanostructured carbons containing FeNi/NiFe2O4 supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions

    Aziz, I., Lee, J. G., Duran, H., Kirchhoff, K., Baker, R. T., Irvine, J. T. S. & Arshad, S. N., 11 Nov 2019, In : RSC Advances. 9, 63, p. 36586-36599 14 p.

    Research output: Contribution to journalArticle

  5. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Towards polariton blockade of confined exciton–polaritons

    Delteil, A., Fink, T., Schade, A., Höfling, S., Schneider, C. & Imamoğlu, A., Mar 2019, In : Nature Materials. 18, 3, p. 219-222 4 p.

    Research output: Contribution to journalArticle

  2. Colloidal nanocrystals: electrifying quantum dots for lasers

    Samuel, I. D. W., Jan 2018, In : Nature Materials. 17, p. 9-10

    Research output: Contribution to journalComment/debate

  3. Imaging orbital-selective quasiparticles in the Hund’s metal state of FeSe

    Kostin, A., Sprau, P. O., Kreisel, A., Chong, Y. X., Böhmer, A. E., Canfield, P. C., Hirschfeld, P. J., Andersen, B. M. & Davis, J. C. S., 3 Sep 2018, In : Nature Materials.

    Research output: Contribution to journalArticle

  4. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    Jiang, J., Long Bai, Z., Chen, Z. H., He, L., Wei Zhang, D., Hua Zhang, Q., An Shi, J., Hyuk Park, M., Scott, J. F., Seong Hwang, C. & Quan Jiang, A., Jan 2018, In : Nature Materials. 17, 1, p. 49-56 8 p.

    Research output: Contribution to journalArticle

  5. Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides

    Bahramy, M. S., Clark, O. J., Yang, B-J., Feng, J., Bawden, L., Riley, J. M., Markovic, I., Mazzola, F., Sunko, V., Biswas, D., Cooil, S. P., Jorge, M., Wells, J. W., Leandersson, M., Balasubramanian, T., Fujii, J., Vobornik, I., Rault, J., Kim, T. K., Hoesch, M. & 6 others, Okawa, K., Asakawa, M., Sasagawa, T., Eknapakul, T., Meevasana, W. & King, P. D. C., Jan 2018, In : Nature Materials. 17, 1, p. 21-28 8 p.

    Research output: Contribution to journalArticle

ID: 279117

Top