Skip to content

Research at St Andrews

‘All in one’ photo-reactor pod containing TiO2 coated glass beads and LEDs for continuous photocatalytic destruction of cyanotoxins in water

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 9/01/21)

Author(s)

Nimal Gunaratne, Carlos Pestana, Nathan Skillen, Jianing Hui, Saravanan Rajendran, Christine Edwards, John Thomas Sirr Irvine, Peter Robertson, Linda Lawton

School/Research organisations

Abstract

Blooms of blue-green algae (cyanobacteria) in water reservoirs frequently produce highly toxic secondary metabolites including microcystins which have resulted in both human and animal fatalities. To tackle this global problem, we present here a viable solution: utilising the photo-catalytic power of TiO2 immobilised on glass beads that are encased in ‘photo-reactor pods’, equipped with UV LEDs, for the photocatalytic destruction of cyanotoxins. These reactor pods are designed in such a way that they can be used continuously with the aid of a power supply to facilitate the photocatalytic process. This process could be used to address one of the Global Challenges: providing safe drinking water around the globe.
Close

Details

Original languageEnglish
Pages (from-to)945-950
Number of pages5
JournalEnvironmental Science: Water Research & Technology
Volume6
Issue number4
Early online date9 Jan 2020
DOIs
Publication statusPublished - Apr 2020

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Evolution of anodic product from molybdenum metal in absolute ethanol and humidity sensing under ambient conditions

    Ni, C., Carolan, D., Hui, J., Rocks, C., Padmanaban, D., Ni, J., Xie, D., Fang, Z., Irvine, J., Maguire, P. & Mariotti, D., 4 Sep 2019, In : Crystal Growth & Design. 19, 9, p. 5249-5257 9 p.

    Research output: Contribution to journalArticle

  2. Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Chanthanumataporn, M., Hui, J., Yue, X., Kakinuma, K., Irvine, J. T. S. & Hanamura, K., 20 May 2019, In : Electrochimica Acta. 306, p. 159-166 8 p.

    Research output: Contribution to journalArticle

  3. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells

    Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. & Irvine, J. T. S., 14 Jun 2018, In : Journal of Materials Chemistry A. 6, 22, p. 10411-10420 10 p.

    Research output: Contribution to journalArticle

  4. Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications

    Ni, C., Carolan, D., Rocks, C., Hui, J., Fang, Z., Padmanaban, D. B., Ni, J-P., Xie, D., Maguire, P., Irvine, J. T. S. & Mariotti, D., 7 May 2018, In : Green Chemistry. 20, 9, p. 2101-2109 9 p.

    Research output: Contribution to journalArticle

  5. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Li, S., Jiang, C., Liu, J., Tao, H., Meng, X., Connor, P., Hui, J., Wang, S., Ma, J. & Irvine, J. T. S., 15 Apr 2018, In : Journal of Power Sources. 383, p. 10-16 7 p.

    Research output: Contribution to journalArticle

ID: 267283387

Top