Skip to content

Research at St Andrews

Ammonia and related chemicals as potential indirect hydrogen storage materials

Research output: Contribution to journalArticlepeer-review

Author(s)

Rong Lan, John Thomas Sirr Irvine, Shanwen Tao

School/Research organisations

Abstract

Energy production and combating climate change are among some of the most significant challenges we are facing today. Whilst the introduction of a hydrogen economy has its merits, the associated problems with on-board hydrogen storage are still a barrier to implementation. Ammonia and related chemicals may provide an alternative energy vector. Besides ammonia and metal amine salts, some other ammonia related materials such as hydrazine, ammonia borane, ammonia carbonate and urea also have the potential for use as alternative fuels. These materials conform to many of the US DOE targets for hydrogen storage materials.

Similar to hydrogen, ammonia itself is carbon-free at the end users, although CO2 emission on production of ammonia is dependent on the source of energy. Both hydrogen and ammonia utilised similar energy sources for production: fossil fuels, biomass, renewable electricity, nuclear and solar energy.

While a number of papers have been published on the catalytic decomposition of ammonia or related chemicals to produce hydrogen, the use of fuel cells directly fed by ammonia and related chemicals would have a higher efficiency. In recent years significant progress has been made on direct ammonia, hydrazine and urea fuel cells to generate electricity from these materials for transport applications. With the development and application in these technologies, reduction of CO2 emissions in transportation would be possible.

In this review, we propose the use of ammonia and related chemicals as potential indirect hydrogen storage materials. The progress on fuel cells using these fuels is also briefly reviewed.
Close

Details

Original languageEnglish
Pages (from-to)1482–1494
JournalInternational Journal of Hydrogen Energy
Volume37
Issue number2
DOIs
Publication statusPublished - 2012

    Research areas

  • Ammonia; , Ammonium carbonate;, Urea; , Fuel cell, Hydrazine; , Hydrogen storage;

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

  4. A Ce/Ru codoped SrFeO3−δ perovskite for a coke-resistant anode of a symmetrical solid oxide fuel cell

    Li, B., He, S., Li, J., Yue, X., Irvine, J. T. S., Xie, D., Ni, J. & Ni, C., 18 Dec 2020, In: ACS Catalysis. 10, 24, p. 14398-14409 12 p.

    Research output: Contribution to journalArticlepeer-review

  5. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In: Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Electrochemical performance of novel NGCO-LSCF composite cathode for intermediate temperature solid oxide fuel cells

    Samreen, A., Galvez-Sanchez, M., Steinberger-Wilckens, R., Arifin, N. A., Saher, S., Ali, S. & Qamar, A., 21 Aug 2020, In: International Journal of Hydrogen Energy. 45, 41, p. 21714-21721

    Research output: Contribution to journalArticlepeer-review

  2. Reversible, all-perovskite SOFCs based on La, Sr gallates

    Glisenti, A., Bedon, A., Carollo, G., Savaniu, C. & Irvine, J. T. S., 10 Aug 2020, In: International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticlepeer-review

  3. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In: International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticlepeer-review

  4. Highly dense and chemically stable proton conducting electrolyte sintered at 1200 °C

    Hossain, S., Abdalla, A. M., Radenahmad, N., Zakaria, A. K. M., Zaini, J. H., Rahman, S. M. H., Eriksson, S. G., Irvine, J. T. S. & Azad, A. K., 11 Jan 2018, In: International Journal of Hydrogen Energy. 43, 2, p. 894-907

    Research output: Contribution to journalArticlepeer-review

  5. Production and stability of low amount fraction of formaldehyde in hydrogen gas standards

    Bacquart, T., Perkins, M., Ferracci, V., Martin, N. A., Resner, K., Ward, M. K. M., Cassidy, N., Hook, J. B., Brewer, P. J., Irvine, J. T. S., Connor, P. A. & Murugan, A., 29 Mar 2018, In: International Journal of Hydrogen Energy. 43, 13, p. 6711-6722

    Research output: Contribution to journalArticlepeer-review

ID: 16574984

Top