Skip to content

Research at St Andrews

Ammonia and related chemicals as potential indirect hydrogen storage materials

Research output: Contribution to journalArticle

Author(s)

Rong Lan, John Thomas Sirr Irvine, Shanwen Tao

School/Research organisations

Abstract

Energy production and combating climate change are among some of the most significant challenges we are facing today. Whilst the introduction of a hydrogen economy has its merits, the associated problems with on-board hydrogen storage are still a barrier to implementation. Ammonia and related chemicals may provide an alternative energy vector. Besides ammonia and metal amine salts, some other ammonia related materials such as hydrazine, ammonia borane, ammonia carbonate and urea also have the potential for use as alternative fuels. These materials conform to many of the US DOE targets for hydrogen storage materials.

Similar to hydrogen, ammonia itself is carbon-free at the end users, although CO2 emission on production of ammonia is dependent on the source of energy. Both hydrogen and ammonia utilised similar energy sources for production: fossil fuels, biomass, renewable electricity, nuclear and solar energy.

While a number of papers have been published on the catalytic decomposition of ammonia or related chemicals to produce hydrogen, the use of fuel cells directly fed by ammonia and related chemicals would have a higher efficiency. In recent years significant progress has been made on direct ammonia, hydrazine and urea fuel cells to generate electricity from these materials for transport applications. With the development and application in these technologies, reduction of CO2 emissions in transportation would be possible.

In this review, we propose the use of ammonia and related chemicals as potential indirect hydrogen storage materials. The progress on fuel cells using these fuels is also briefly reviewed.
Close

Details

Original languageEnglish
Pages (from-to)1482–1494
JournalInternational Journal of Hydrogen Energy
Volume37
Issue number2
DOIs
Publication statusPublished - 2012

    Research areas

  • Ammonia; , Ammonium carbonate;, Urea; , Fuel cell, Hydrazine; , Hydrogen storage;

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

  4. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  5. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

Related by journal

  1. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In : International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticle

  2. Highly dense and chemically stable proton conducting electrolyte sintered at 1200 °C

    Hossain, S., Abdalla, A. M., Radenahmad, N., Zakaria, A. K. M., Zaini, J. H., Rahman, S. M. H., Eriksson, S. G., Irvine, J. T. S. & Azad, A. K., 11 Jan 2018, In : International Journal of Hydrogen Energy. 43, 2, p. 894-907

    Research output: Contribution to journalArticle

  3. Production and stability of low amount fraction of formaldehyde in hydrogen gas standards

    Bacquart, T., Perkins, M., Ferracci, V., Martin, N. A., Resner, K., Ward, M. K. M., Cassidy, N., Hook, J. B., Brewer, P. J., Irvine, J. T. S., Connor, P. A. & Murugan, A., 29 Mar 2018, In : International Journal of Hydrogen Energy. 43, 13, p. 6711-6722

    Research output: Contribution to journalArticle

  4. Electrochemical performance of different carbon fuels on a hybrid direct carbon fuel cell

    Li, S., Pan, W., Wang, S., Meng, X., Jiang, C. & Irvine, J. T. S., 22 Jun 2017, In : International Journal of Hydrogen Energy. 42, 25, p. 16279-16287 9 p.

    Research output: Contribution to journalArticle

  5. Electrochemical properties and durability of in-situ composite cathodes with SmBa0.5Sr0.5Co2O5+δ for metal supported solid oxide fuel cells

    Irvine, J. T. S., Bae, J., Park, J-Y., Choi, W. S. & Kim, J. H., 12 Jan 2017, In : International Journal of Hydrogen Energy. 42, 2, p. 1212-1220 9 p.

    Research output: Contribution to journalArticle

ID: 16574984

Top