Skip to content

Research at St Andrews

Ammonium availability in the Late Archaean nitrogen cycle

Research output: Contribution to journalArticlepeer-review

Author(s)

Jie Yang, Chris Junium, Nathalie Grassineau, Euan Nisbet, Gareth James Izon, Colin William Mettam, Anthony Martin, Aubrey L. Zerkle

School/Research organisations

Abstract

The bioavailability of essential nutrients such as nitrogen and phosphorus has fluctuated with the chemical evolution of Earth surface environments over geological timescales. However, significant uncertainty remains over the evolution of Earth’s early nitrogen cycle, particularly how and when it responded to the evolution of oxygenic photosynthesis. Here we apply multi-proxy geochemical analyses (Fe speciation, δ13C and δ15N) to exceptionally well-preserved shales from the approximately 2.7 billion year old Manjeri Formation in the Belingwe Greenstone Belt, Zimbabwe, to evaluate the redox status of Earth’s early nitrogen cycle and decipher feedbacks associated with the initial stages of planetary oxygenation. These continental shelf sediments were previously linked to early cyanobacterial oxygen production, and provide a direct test of conflicting hypotheses concerning the importance of nitrogen oxyanions in the Late Archaean era. Our data reveal a dominantly anaerobic marine nitrogen cycle in which ammonium-replete ferruginous waters underlay an ephemeral oxygen oasis. Driven by the emergence of oxygenic photosynthesis, increased primary productivity could have periodically strengthened export production, which allowed for the accumulation of ammonium in the water column during organic matter degradation. Restricted oxygen availability could have allowed the upwelling ammonium to reach the photic zone to provide ample nitrogen to fuel a prolific Late Archaean biosphere.
Close

Details

Original languageEnglish
Pages (from-to)553-557
Number of pages6
JournalNature Geoscience
Volume12
Issue number7
Early online date20 May 2019
DOIs
Publication statusPublished - Jul 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A copper isotope investigation of methane cycling in Late Archaean sediments

    Zavina-James, N. A. V., Zerkle, A. L., Steele, R. C. J., Warke, M. R., Izon, G. & Savage, P. S., 5 May 2021, (Accepted/In press) In: Precambrian Research.

    Research output: Contribution to journalArticlepeer-review

  2. A 200-million year delay in permanent atmospheric oxygenation

    Poulton, S., Bekker, A., Cumming, V., Zerkle, A. L., Canfield, D. & Johnston, D., 29 Mar 2021, In: Nature. 17 p.

    Research output: Contribution to journalArticlepeer-review

  3. Nitrogen isotopes in deep time

    Mettam, C. & Zerkle, A. L., 22 Jan 2021, Cambridge Elements. Lyons, T., Turchyn, A. & Reinhard, C. (eds.). Cambridge University Press, (Elements in geochemical tracers in Earth system science).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  4. Spatial variability of microbial communities and salt distributions across a latitudinal aridity gradient in the Atacama Desert

    Shen, J., Wyness, A., Claire, M. & Zerkle, A., 13 Jan 2021, In: Microbial Ecology. First Online, 17 p.

    Research output: Contribution to journalArticlepeer-review

  5. Unravelling biogeochemical phosphorus dynamics in hyperarid Mars-analogue soils using stable oxygen isotopes in phosphate

    Shen, J., Smith, A., Claire, M. & Zerkle, A. L., Nov 2020, In: Geobiology. 18, 6, p. 760-779 20 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations

    Jurikova, H., Gutjahr, M., Wallmann, K., Flögel, S., Liebetrau, V., Posenato, R., Angiolini, L., Garbelli, C., Brand, U., Wiedenbeck, M. & Eisenhauer, A., Nov 2020, In: Nature Geoscience. 13, p. 745–750

    Research output: Contribution to journalArticlepeer-review

  2. Persistently well-ventilated intermediate-depth ocean through the last deglaciation

    Chen, T., Robinson, L. F., Burke, A., Claxton, L., Hain, M. P., Li, T., Rae, J. W. B., Stewart, J., Knowles, T. D. J., Fornari, D. & Harpp, K. S., 12 Oct 2020, In: Nature Geoscience.

    Research output: Contribution to journalArticlepeer-review

  3. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions

    Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M. & Wilson, R., Feb 2019, In: Nature Geoscience. 12, 2, p. 100-107 10 p.

    Research output: Contribution to journalArticlepeer-review

  4. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial

    Shields, G. A., Mills, B. J. W., Zhu, M., Raub, T. D., Daines, S. J. & Lenton, T. M., Oct 2019, In: Nature Geoscience. 12, 10, p. 823–827

    Research output: Contribution to journalArticlepeer-review

ID: 258600017

Top