Skip to content

Research at St Andrews

Ammonium availability in the Late Archean nitrogen cycle

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 20/11/19)

Author(s)

Jie Yang, Chris Junium, Nathalie Grassineau, Euan Nisbet, Gareth James Izon, Colin William Mettam, Tony Martin, Aubrey L. Zerkle

School/Research organisations

Abstract

The bioavailability of essential nutrients such as nitrogen and phosphorus has fluctuated with the chemical evolution of Earth surface environments over geological timescales. However, significant uncertainty remains over the evolution of Earth’s early nitrogen cycle, particularly how and when it responded to the evolution of oxygenic photosynthesis. Here we apply multi-proxy geochemical analyses (Fe speciation, δ13C and δ15N) to exceptionally well-preserved shales from the approximately 2.7 billion year old Manjeri Formation in the Belingwe Greenstone Belt, Zimbabwe, to evaluate the redox status of Earth’s early nitrogen cycle and decipher feedbacks associated with the initial stages of planetary oxygenation. These continental shelf sediments were previously linked to early cyanobacterial oxygen production, and provide a direct test of conflicting hypotheses concerning the importance of nitrogen oxyanions in the Late Archaean era. Our data reveal a dominantly anaerobic marine nitrogen cycle in which ammonium-replete ferruginous waters underlay an ephemeral oxygen oasis. Driven by the emergence of oxygenic photosynthesis, increased primary productivity could have periodically strengthened export production, which allowed for the accumulation of ammonium in the water column during organic matter degradation. Restricted oxygen availability could have allowed the upwelling ammonium to reach the photic zone to provide ample nitrogen to fuel a prolific Late Archaean biosphere.
Close

Details

Original languageEnglish
Pages (from-to)553-557
Number of pages6
JournalNature Geoscience
Volume12
Early online date20 May 2019
DOIs
Publication statusE-pub ahead of print - 20 May 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Nitrate Reduction

    Zerkle, A. L., 23 Jun 2019, Encyclopedia of Astrobiology. Gargaud, M. (ed.). Berlin, Heidelberg: Springer

    Research output: Chapter in Book/Report/Conference proceedingChapter

  2. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia

    Paiste, K., Lepland, A., Zerkle, A. L., Kirsimäe, K., Izon, G. J., Patel, N., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A., Rychanchik, D. & Prave, A. R., 5 Nov 2018, In : Chemical Geology. 499, p. 151-164 14 p.

    Research output: Contribution to journalArticle

  3. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Lammer, H., Zerkle, A. L., Gebauer, S., Tosi, N., Noack, L., Scherf, M., Pilat-Lohinger, E., Güdel, M., Grenfell, J. L., Godolt, M. & Nikolaou, A., Nov 2018, In : Astronomy and Astrophysics Review. 26, 72 p., 2.

    Research output: Contribution to journalReview article

  4. Two-billion-year-old evaporites capture Earth's great oxidation

    Blättler, C., Claire, M., Prave, A. R., Zerkle, A. L. & Warke, M. R., 22 Mar 2018, In : Science. eaar2687.

    Research output: Contribution to journalArticle

Related by journal

  1. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions

    Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M. & Wilson, R., Feb 2019, In : Nature Geoscience. 12, 2, p. 100-107 8 p.

    Research output: Contribution to journalArticle

  2. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean

    Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B., Burke, A., Foster, G. L. & Lear, C. H., 23 Apr 2018, In : Nature Geoscience. 8 p.

    Research output: Contribution to journalArticle

  3. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition

    Palin, R. M. & White, R. W., Jan 2016, In : Nature Geoscience. 9, p. 60-64

    Research output: Contribution to journalArticle

  4. Emergence of modern continental crust about 3 billion years ago

    Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J., 2 Jul 2015, In : Nature Geoscience. 8, 7, p. 552-555 4 p.

    Research output: Contribution to journalArticle

ID: 258600017