Skip to content

Research at St Andrews

An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 19/11/19)


Anne-Sofie Ahms, Adam Maloof, Francis Macdonald, Paul Hoffman, Christian Bjerrum, Uyanga Bold, Catherine V. Rose, Justin Strauss, John Higgins

School/Research organisations


The beginning of the Ediacaran Period (∼635 Ma) is marked by conspicuous dolostone units that cap Marinoan glacial deposits worldwide. The extent and sedimentary characteristics of the cap dolostones indicate that anomalous carbonate over-saturation coincided with deglacial sea-level rise and ocean warming. However, the geochemical variability within cap dolostones, both between continents, across single continental margins, and within individual stratigraphic sections has been difficult to reconcile with depositional models. Using a compilation of new calcium and magnesium isotope measurements in Marinoan cap dolostone successions worldwide, we show that the geochemical variability can be explained by early diagenetic dolomitization of aragonite along a spectrum of fluid- and sediment-buffered conditions. Dolostones from the outer platform formed under fluid-buffered conditions, whereas dolostones on the inner platform and foreslope environment formed under sediment-buffered conditions. This spatial pattern of dolomitizing conditions is consistent with buoyant recirculation of glacial seawater within carbonate platforms driven by the deglacial sea-level rise and development of a meltwater surface ocean. Using a numerical diagenetic model to evaluate the geochemical differences between sediment- and fluid-buffered cap dolostone units, we constrain the chemical and isotopic composition of both the dolomitizing fluid (glacial seawater [δ13C∼ 0–2‰]), the meltwater lens (δ13C∼−11‰), and the primary aragonite sediment (δ13C∼−6 to −3‰). These model end-members do not imply that primary geochemical variability did not exist but demonstrates that it is not necessary to change the chemistry of seawater to explain the global stratigraphic variability in the geochemistry of basal Ediacaran cap dolostones. Our results provide a novel framework for understanding the geochemical variability of cap dolostone units, including large excursions in carbon isotopes, and how this variability is the product of local diagenetic processes expressed globally in continental margin environments following the last Snowball Earth.


Original languageEnglish
Pages (from-to)292-307
Number of pages16
JournalEarth and Planetary Science Letters
Early online date19 Nov 2018
Publication statusPublished - 15 Jan 2019

    Research areas

  • Cap carbonate, Snowball Earth, Ca istopes, Mg isotopes, Diagenesis

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates

    Rose, C. V., Webb, S. M., Newville, M., Lanzirotti, A., Richardson, J. A., Tosca, N. J., Catalano, J. G., Bradley, A. S. & Fike, D. A., 5 Jul 2019, In : Geology. In press

    Research output: Contribution to journalArticle

  2. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate

    Richardson, J. A., Newville, M., Lanzirotti, A., Webb, S. M., Rose, C. V., Catalano, J. G. & Fike, D. A., 30 May 2019, In : Chemical Geology. In press

    Research output: Contribution to journalArticle

  3. Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden

    Rose, C., Fischer, W. W., Finnegan, S. & Fike, D. A., 1 Feb 2019, In : Geochimica et Cosmochimica Acta. 246, p. 299-316 18 p.

    Research output: Contribution to journalArticle

  4. Snowball Earth climate dynamics and Cryogenian geology-geobiology

    Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., Erwin, D. H., Fairchild, I. J., Ferreira, D., Goodman, J. C., Halverson, G. P., Jansen, M. F., Le Hir, G., Love, G. D., Macdonald, F. A., Maloof, A. C., Partin, C. A. & 7 othersRamstein, G., Rose, B. E. J., Rose, C. V., Sadler, P. M., Tziperman, E., Voigt, A. & Warren, S. G., 8 Nov 2017, In : Science Advances. 3, 11, 44 p., e1600983.

    Research output: Contribution to journalArticle

  5. Rethinking the ancient sulfur cycle

    Fike, D. A., Bradley, A. S. & Rose, C. V., 30 May 2015, In : Annual Review of Earth and Planetary Sciences. 43, p. 593-622 30 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Earth and Planetary Science Letters (Journal)

    Chris Hawkesworth (Member of editorial board)

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores

    Burke, A., Moore, K. A., Sigl, M., Nita, D. C., McConnell, J. R. & Adkins, J. F., 20 Jun 2019, In : Earth and Planetary Science Letters. 521, p. 113-119 7 p.

    Research output: Contribution to journalArticle

  2. Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition

    Hauzer, H., Evans, D., Müller, W., Rosenthal, Y. & Erez, J., 1 Sep 2018, In : Earth and Planetary Science Letters. 497, p. 80-91 12 p.

    Research output: Contribution to journalArticle

  3. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy

    Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N. & Lear, C. H., 15 Sep 2018, In : Earth and Planetary Science Letters. 498, p. 362-376 15 p.

    Research output: Contribution to journalArticle

  4. Cryogenic silicification of microorganisms in hydrothermal fluids

    Fox-Powell, M. G., Channing, A., Applin, D., Cloutis, E., Preston, L. J. & Cousins, C. R., 15 Sep 2018, In : Earth and Planetary Science Letters. 498, p. 1-8 8 p.

    Research output: Contribution to journalArticle

ID: 256626110