Skip to content

Research at St Andrews

An efficient quantum photonic phase shift in a low Q-factor regime

Research output: Contribution to journalArticle

Author(s)

Petros Androvitsaneas, Andrew Young, Joseph Lennon, Christian Schneider, Sebastian Maier, Janna Hinchliff, George Atkinson, Edmund Harbord, Martin Kamp, Sven Höfling, John G. Rarity, Ruth Oulton

School/Research organisations

Abstract

Solid-state quantum emitters have long been recognised as the ideal platform to realize integrated quantum photonic technologies. We demonstrate that a self-assembled negatively charged quantum dot (QD) in a low Q-factor photonic micropillar is a suitable design for deterministic polarisation switching and spin-photon entanglement. We show this by measuring a shift in phase of an input single photon of at least 2π/3. As we explain in the text, this is strong experimental proof that input photons can interact with the emitter deterministically. A deterministic photon-emitter interaction is a viable and scalable means to achieve several vital functionalities such as single photon switches and entanglement gates. Our experimentally determined value is limited by mode mismatch between the input laser and the cavity, QD spectral fluctuations and spin relaxation. When on-resonance we estimate that up to ∼80% of the collected photons couple into the cavity mode and have interacted with the QD and undergone a phase shift of π.
Close

Details

Original languageEnglish
Pages (from-to)429-435
JournalACS Photonics
Volume6
Issue number2
Early online date11 Jan 2019
DOIs
Publication statusPublished - 20 Feb 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Realization of all-optical vortex switching in exciton-polariton condensates

    Ma, X., Berger, B., Assmann, M., Driben, R., Meier, T., Schneider, C., Höfling, S. & Schumacher, S., 14 Feb 2020, In : Nature Communications. 11, 7 p., 897.

    Research output: Contribution to journalArticle

  2. Acoustic phonon sideband dynamics during polaron formation in a single quantum dot

    Wigger, D., Karakhanyan, V., Schneider, C., Kamp, M., Höfling, S., Machnikowski, P., Kuhn, T. & Kasprzak, J., 10 Feb 2020, In : Optics Letters. 45, 4, p. 919-922

    Research output: Contribution to journalArticle

  3. Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates

    Kim, S., Rubo, Y. G., Liew, T. C. H., Brodbeck, S., Schneider, C., Höfling, S. & Deng, H., 4 Feb 2020, (Accepted/In press) In : Physical Review. B, Condensed matter and materials physics.

    Research output: Contribution to journalArticle

  4. Boson sampling with 20 input photons in 60-mode interferometer at 1014-dimensional Hilbert space

    Wang, H., Qin, J., Ding, X., Chen, M-C., Chen, S., You, X., He, Y-M., Jiang, X., You, L., Wang, Z., Schneider, C., Renema, J. J., Hoefling, S., Lu, C-Y. & Pan, J-W., 20 Dec 2019, In : Physical Review Letters. 123, 15, 7 p., 250503.

    Research output: Contribution to journalArticle

  5. Coherence and interaction in confined room-temperature polariton condensates with Frenkel excitons

    Betzold, S., Dusel, M., Kyriienko, O., Dietrich, C. P., Klembt, S., Ohmer, J., Fischer, U., Shelykh, I. A., Schneider, C. & Höfling, S., 17 Dec 2019, In : ACS Photonics. Just Accepted

    Research output: Contribution to journalArticle

Related by journal

  1. Coherence and interaction in confined room-temperature polariton condensates with Frenkel excitons

    Betzold, S., Dusel, M., Kyriienko, O., Dietrich, C. P., Klembt, S., Ohmer, J., Fischer, U., Shelykh, I. A., Schneider, C. & Höfling, S., 17 Dec 2019, In : ACS Photonics. Just Accepted

    Research output: Contribution to journalArticle

  2. Exact states and spectra of vibrationally dressed polaritons

    Zeb, M. A., Kirton, P. G. & Keeling, J. M. J., 17 Jan 2018, In : ACS Photonics. 5, 1, p. 249-257

    Research output: Contribution to journalArticle

  3. Monolithic high-contrast grating based polariton laser

    Kim, S., Wang, Z., Brodbeck, S., Schneider, C., Höfling, S. & Deng, H., 2 Nov 2018, In : ACS Photonics. 6, 1, p. 18–22

    Research output: Contribution to journalArticle

  4. Photopolymerization with light fields possessing orbital angular momentum: Generation of helical microfibers

    Lee, J., Arita, Y., Toyoshima, S., Miyamoto, K., Panagiotopoulos, P., Wright, E., Dholakia, K. & Omatsu, T., 17 Oct 2018, In : ACS Photonics. 5, 10, p. 4156–4163

    Research output: Contribution to journalArticle

ID: 257340400

Top