Skip to content

Research at St Andrews

An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals.

Research output: Contribution to journalArticle

Author(s)

T. Takahashi, C. McDougall, J. Troschianko, W-C. Chen, A.J. Nagarajan, S.M. Shimeld, David Ellard Keith Ferrier

School/Research organisations

Abstract

Background: Since the drastic reorganisation of the phylogeny of the animal kingdom into three major clades of bilaterians; Ecdysozoa, Lophotrochozoa and Deuterostomia, it became glaringly obvious that the selection of model systems with extensive molecular resources was heavily biased to wards only two of these three clades, namely the Ecdysozoa and Deuterostomia. Increasing efforts have been put towards redressing this imbalance in recent years, and one of the principal phyla in the vanguardof this endeavour is the Annelida.

Results: In the context of this effort we here report our characterisation of an Expressed Sequence Tag (EST) screen in the serpulid annelid, Pomatoceros lamarckii. We have sequenced over 5,000 ESTs which consolidate into over 2,000 sequences
(clusters and singletons). These sequences are used to build phylogenetic trees to estimate relative branch lengths amongst different taxa and, by comparison to genomic data from other animals, patterns of gene retention and loss are deduced.

Conclusion: The molecular phylogenetic trees including the P. lamarckii sequences extend early observations that polychaetes tend to have relatively short branches in such trees, and hence are useful taxa with which to reconstruct gene family evolution. Also, with the availability of lophotrochozoan data such as that of P. lamarckii, it is now possible to make much more accurate reconstructions of the gene complement of the ancestor of the bilaterians than was previously possible from comparisons of ecdysozoan and deuterostome genomes to no n-bilaterian outgroups. It is clear that the traditional molecular model systems for protostomes (e.g. Drosophila melanogaster and Caenorhabditis elegans), which are restricted to the Ecdysozoa, have undergone extensive gene loss during evolution. These ecdysozoan systems, in terms of gene content, are thus more derived from the bilaterian ancestral condition than lophotrochozoan systems likethe polychaetes, and thus cannot be used as good, general
representatives of protostome genomes. Currently sequenced insect and nematode genomes are less suitable models for deducing bilaterian ancestral states than lophotrochozoan genomes, despite the array of powerful genetic and mechanistic manipulation techniques in these ecdysozoans. A distinct category of genes that includes those present in non-bilaterians and
lophotrochozoans, but which are absent from ecdysozoans and deuterostomes, highlights the need for further lophotrochozoan data to gain a more complete understanding of the gene complement of the bilaterian ancestor.
Close

Details

Original languageEnglish
Article number240
Number of pages17
JournalBMC Evolutionary Biology
Volume9
DOIs
Publication statusPublished - 25 Sep 2009

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Space and time in Hox/ParaHox gene cluster evolution.

    Ferrier, D. E. K., 2019, Perspectives on Evolutionary Developmental Biology: Essays for Alessandro Minelli. Fusco, G. (ed.). Padova: Padova University Press, p. 245-258

    Research output: Chapter in Book/Report/Conference proceedingChapter

  2. Two more Posterior Hox genes and Hox cluster dispersal in echinoderms

    Szabó, R. & Ferrier, D. E. K., 27 Dec 2018, In : BMC Evolutionary Biology. 18, 13 p., 203.

    Research output: Contribution to journalArticle

  3. Transcriptional regulation of the Ciona Gsx gene in the neural plate

    Hudson, C., Esposito, R., Palladino, A., Staiano, L., Ferrier, D., Faure, E., Lemaire, P., Yasuo, H. & Spagnuolo, A., 21 Dec 2018, In : Developmental Biology. In press

    Research output: Contribution to journalArticle

  4. Amphioxus functional genomics and the origins of vertebrate gene regulation

    Marletaz, F., Firbas, P., Maeso, I., Tena, J., Bogdanovic, O., Perry, M., Wyatt, C., de la Calle-Mustienes, E., Bertrand, S., Burguera, D., Acemel, R., van Heeringen, S., Naranjo, S., Herrera-Ubeda, C., Skvortsova, K., Jimenez-Gancedo, S., Aldea, D., Marquez, Y., Buono, L., Kozmikova, I. & 41 othersPermanyer, J., Louis, A., Albuixech-Crespo, B., Le Petillon, Y., Leon Florian, A., Subirana, L., Balwierz, P. J., Duckett, P., Farahani, E., Aury, J. M., Mangenot, S., Wincker, P., Albalat, R., Benito-Gutierrez, E., Canestro, C., Castro, F., D'Aniello, S., Ferrier, D. E. K., Huang, S., Laudet, V., Marais, G., Pontarotti, P., Schubert, M., Seitz, H., Somorjai, I. M. L., Takahashi, T., Mirabeau, O., Xu, A., Yu, J-K., Carninci, P., Martinez-Morales, J., Crollius, H., Kozmik, Z., Weirauch, M., Garcia-Fernandez, J., Lister, R., Lenhard, B., Holland, P., Escriva, H., Gomez-Skarmeta, J. L. & Irimia, M., 21 Nov 2018, In : Nature. 564, 7734, p. 64-70 29 p.

    Research output: Contribution to journalArticle

  5. Horizons in evolutionary genomics: an interview with David Ferrier

    Ferrier, D. E. K., 1 Nov 2018, In : BMC Biology. 16, 3 p., 124.

    Research output: Contribution to journalArticle

Related by journal

  1. The evolution of ependymin-related proteins

    McDougall, C., Hammond, M., Dailey, S. C., Somorjai, I. M. L., Cummins, S. & Degnan, B., 4 Dec 2018, In : BMC Evolutionary Biology. 18, 13 p., 182.

    Research output: Contribution to journalArticle

  2. Two more Posterior Hox genes and Hox cluster dispersal in echinoderms

    Szabó, R. & Ferrier, D. E. K., 27 Dec 2018, In : BMC Evolutionary Biology. 18, 13 p., 203.

    Research output: Contribution to journalArticle

  3. The evolution of social learning mechanisms and cultural phenomena in group foragers

    van der Post, D. J., Franz, M. & Laland, K. N., 10 Feb 2017, In : BMC Evolutionary Biology. 17, 15 p., 49.

    Research output: Contribution to journalArticle

  4. Skill learning and the evolution of social learning mechanisms

    van der Post, D. J., Franz, M. & Laland, K. N., 24 Aug 2016, In : BMC Evolutionary Biology. 16, 19 p., 166.

    Research output: Contribution to journalArticle

  5. TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates

    Garstang, M. G., Osborne, P. & Ferrier, D. E. K., 3 Mar 2016, In : BMC Evolutionary Biology. 16, 19 p., 57.

    Research output: Contribution to journalArticle

Related by journal

  1. BMC Evolutionary Biology (Journal)

    David Ellard Keith Ferrier (Editor)
    2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. BMC Evolutionary Biology (Journal)

    David Ellard Keith Ferrier (Editor)
    Oct 2016 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  3. BMC Evolutionary Biology (Journal)

    David Ellard Keith Ferrier (Editor)
    2011 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  4. BMC Evolutionary Biology (Journal)

    David Ellard Keith Ferrier (Editor)
    2009 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

ID: 462370