Skip to content

Research at St Andrews

An impact melt origin for Earth’s oldest known evolved rocks

Research output: Contribution to journalArticlepeer-review

Open Access permissions

Open

Links

Author(s)

Tim E. Johnson, Nicholas J. Gardiner, Katarina Miljković, Christopher J. Spencer, Christopher L. Kirkland, Phil A. Bland, Hugh Smithies

School/Research organisations

Abstract

Earth’s oldest evolved (felsic) rocks, the 4.02-billion-year-old Idiwhaa gneisses of the Acasta Gneiss Complex, northwest Canada, have compositions that are distinct from the felsic rocks that typify Earth’s ancient continental nuclei, implying that they formed through a different process. Using phase equilibria and trace element modelling, we show that the Idiwhaa gneisses were produced by partial melting of iron-rich hydrated basaltic rocks (amphibolites) at very low pressures, equating to the uppermost ~3 km of a Hadean crust that was dominantly mafic in composition. The heat required for partial melting at such shallow levels is most easily explained through meteorite impacts. Hydrodynamic impact modelling shows not only that this scenario is physically plausible, but also that the region of shallow partial melting appropriate to formation of the Idiwhaa gneisses would have been widespread. Given the predicted high flux of meteorites in the late Hadean, impact melting may have been the predominant mechanism that generated Hadean felsic rocks.

Close

Details

Original languageEnglish
Pages (from-to)795-799
Number of pages5
JournalNature Geoscience
Volume11
Issue number10
Early online date13 Aug 2018
DOIs
Publication statusPublished - Oct 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Stirred not shaken; critical evaluation of a proposed Archean meteorite impact in West Greenland

    Yakymchuk, C., Kirkland, C. L., Cavosie, A. J., Szilas, K., Hollis, J., Gardiner, N. J., Waterton, P., Steenfelt, A. & Martin, L., 1 Mar 2021, In: Earth and Planetary Science Letters. 557, 116730.

    Research output: Contribution to journalArticlepeer-review

  2. The phases of the Moon: modelling crystallisation of the lunar magma ocean through equilibrium thermodynamics

    Johnson, T. E., Morrissey, L. J., Nemchin, A. A., Gardiner, N. J. & Snape, J. F., 15 Feb 2021, In: Earth and Planetary Science Letters. 556, 13 p., 116721.

    Research output: Contribution to journalArticlepeer-review

  3. Theoretical versus empirical secular change in zircon composition

    Kirkland, C. L., Yakymchuk, C., Olierook, H. K. H., Hartnady, M. I. H., Gardiner, N. J., Moyen, J-F., Hugh Smithies, R., Szilas, K. & Johnson, T. E., 15 Jan 2021, In: Earth and Planetary Science Letters. 554, 12 p., 116660.

    Research output: Contribution to journalArticlepeer-review

  4. The Mesoarchaean Akia terrane, West Greenland, revisited: new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Steenfelt, A., Hollis, J., Kirkland, C. L., Sandrin, A., Gardiner, N. J., K. H. Olierook, H., Szilas, K., Waterton, P. & Yakymchuk, C., Jan 2021, In: Precambrian Research. In press, 105958.

    Research output: Contribution to journalArticlepeer-review

  5. Geodynamic implications of synchronous Norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland

    Waterton, P., Hyde, W., Tusch, J., Hollis, J., Kirkland, C., Kinney, C., Yakymchuk, C., Gardiner, N., Zakharov, D., Olierook, H., Münker, C., Lightfoot, P. & Szilas, K., 22 Sep 2020, In: Frontiers in Earth Science. 8, 30 p., 562062.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations

    Jurikova, H., Gutjahr, M., Wallmann, K., Flögel, S., Liebetrau, V., Posenato, R., Angiolini, L., Garbelli, C., Brand, U., Wiedenbeck, M. & Eisenhauer, A., Nov 2020, In: Nature Geoscience. 13, p. 745–750

    Research output: Contribution to journalArticlepeer-review

  2. Persistently well-ventilated intermediate-depth ocean through the last deglaciation

    Chen, T., Robinson, L. F., Burke, A., Claxton, L., Hain, M. P., Li, T., Rae, J. W. B., Stewart, J., Knowles, T. D. J., Fornari, D. & Harpp, K. S., 12 Oct 2020, In: Nature Geoscience.

    Research output: Contribution to journalArticlepeer-review

  3. Ammonium availability in the Late Archaean nitrogen cycle

    Yang, J., Junium, C., Grassineau, N., Nisbet, E., Izon, G. J., Mettam, C. W., Martin, A. & Zerkle, A. L., Jul 2019, In: Nature Geoscience. 12, 7, p. 553-557 6 p.

    Research output: Contribution to journalArticlepeer-review

  4. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions

    Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M. & Wilson, R., Feb 2019, In: Nature Geoscience. 12, 2, p. 100-107 10 p.

    Research output: Contribution to journalArticlepeer-review

  5. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial

    Shields, G. A., Mills, B. J. W., Zhu, M., Raub, T. D., Daines, S. J. & Lenton, T. M., Oct 2019, In: Nature Geoscience. 12, 10, p. 823–827

    Research output: Contribution to journalArticlepeer-review

ID: 261214068

Top