Skip to content

Research at St Andrews

An impact melt origin for Earth’s oldest known evolved rocks

Research output: Contribution to journalArticle

Open Access permissions

Open

Links

Author(s)

Tim E. Johnson, Nicholas J. Gardiner, Katarina Miljković, Christopher J. Spencer, Christopher L. Kirkland, Phil A. Bland, Hugh Smithies

School/Research organisations

Abstract

Earth’s oldest evolved (felsic) rocks, the 4.02-billion-year-old Idiwhaa gneisses of the Acasta Gneiss Complex, northwest Canada, have compositions that are distinct from the felsic rocks that typify Earth’s ancient continental nuclei, implying that they formed through a different process. Using phase equilibria and trace element modelling, we show that the Idiwhaa gneisses were produced by partial melting of iron-rich hydrated basaltic rocks (amphibolites) at very low pressures, equating to the uppermost ~3 km of a Hadean crust that was dominantly mafic in composition. The heat required for partial melting at such shallow levels is most easily explained through meteorite impacts. Hydrodynamic impact modelling shows not only that this scenario is physically plausible, but also that the region of shallow partial melting appropriate to formation of the Idiwhaa gneisses would have been widespread. Given the predicted high flux of meteorites in the late Hadean, impact melting may have been the predominant mechanism that generated Hadean felsic rocks.

Close

Details

Original languageEnglish
Pages (from-to)795-799
Number of pages5
JournalNature Geoscience
Volume11
Issue number10
Early online date13 Aug 2018
DOIs
Publication statusPublished - Oct 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gardiner, N. J. & Szilas, K., 8 Jan 2020, In : Precambrian Research. 339, 105615.

    Research output: Contribution to journalArticle

  2. Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland

    Kirkland, C. L., Yakymchuk, C., Gardiner, N. J., Szilas, K., Hollis, J., Olierook, H. & Steenfelt, A., 10 Jan 2020, In : Chemical Geology. 536, 119467.

    Research output: Contribution to journalArticle

  3. North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons

    Gardiner, N. J., Kirkland, C. L., Hollis, J. A., Cawood, P. A., Nebel, O., Szilas, K. & Yakymchuk, C., 23 Jan 2020, In : Earth and Planetary Science Letters. 534, 116091.

    Research output: Contribution to journalArticle

  4. A window into an ancient backarc? The magmatic and metamorphic history of the Fraser Zone, Western Australia

    Glasson, K. J., Johnson, T. E., Kirkland, C. L., Gardiner, N. J., Clark, C., Blereau, E., Hartnady, M. I. H., Spaggiari, C. & Smithies, H., Apr 2019, In : Precambrian Research. 323, p. 55-69 15 p.

    Research output: Contribution to journalArticle

  5. Building Mesoarchaean crust upon Eoarchaean roots: the Akia Terrane, West Greenland

    Gardiner, N. J., Kirkland, C. L., Hollis, J., Szilas, K., Steenfelt, A., Yakymchuk, C. & Heide-Jørgensen, H., Mar 2019, In : Contributions to Mineralogy and Petrology. 174, 20.

    Research output: Contribution to journalArticle

Related by journal

  1. Ammonium availability in the Late Archaean nitrogen cycle

    Yang, J., Junium, C., Grassineau, N., Nisbet, E., Izon, G. J., Mettam, C. W., Martin, A. & Zerkle, A. L., Jul 2019, In : Nature Geoscience. 12, 7, p. 553-557 6 p.

    Research output: Contribution to journalArticle

  2. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions

    Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M. & Wilson, R., Feb 2019, In : Nature Geoscience. 12, 2, p. 100-107 10 p.

    Research output: Contribution to journalArticle

  3. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial

    Shields, G. A., Mills, B. J. W., Zhu, M., Raub, T. D., Daines, S. J. & Lenton, T. M., 2 Sep 2019, In : Nature Geoscience.

    Research output: Contribution to journalArticle

  4. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean

    Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B., Burke, A., Foster, G. L. & Lear, C. H., May 2018, In : Nature Geoscience. 11, 5, p. 340–344 8 p.

    Research output: Contribution to journalArticle

ID: 261214068

Top