Skip to content

Research at St Andrews

An internal thermal sensor controlling temperature preference in Drosophila

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Fumika N Hamada, Mark Rosenzweig, Kyeongjin Kang, Stefan R Pulver, Alfredo Ghezzi, Timothy J Jegla, Paul A Garrity

School/Research organisations

Abstract

Animals from flies to humans are able to distinguish subtle gradations in temperature and show strong temperature preferences. Animals move to environments of optimal temperature and some manipulate the temperature of their surroundings, as humans do using clothing and shelter. Despite the ubiquitous influence of environmental temperature on animal behaviour, the neural circuits and strategies through which animals select a preferred temperature remain largely unknown. Here we identify a small set of warmth-activated anterior cell (AC) neurons located in the Drosophila brain, the function of which is critical for preferred temperature selection. AC neuron activation occurs just above the fly's preferred temperature and depends on dTrpA1, an ion channel that functions as a molecular sensor of warmth. Flies that selectively express dTrpA1 in the AC neurons select normal temperatures, whereas flies in which dTrpA1 function is reduced or eliminated choose warmer temperatures. This internal warmth-sensing pathway promotes avoidance of slightly elevated temperatures and acts together with a distinct pathway for cold avoidance to set the fly's preferred temperature. Thus, flies select a preferred temperature by using a thermal sensing pathway tuned to trigger avoidance of temperatures that deviate even slightly from the preferred temperature. This provides a potentially general strategy for robustly selecting a narrow temperature range optimal for survival.
Close

Details

Original languageEnglish
Pages (from-to)217-20
Number of pages4
JournalNature
Volume454
Issue number7201
DOIs
Publication statusPublished - 10 Jul 2008

    Research areas

  • Animals, Avoidance Learning, Body Temperature, Choice Behavior, Drosophila Proteins, Drosophila melanogaster, Female, Larva, Molecular Sequence Data, Neurons, Oocytes, TRPC Cation Channels, Temperature, Xenopus laevis

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes

    Murawski, C., Pulver, S. R. & Gather, M. C., 7 Dec 2020, In: Nature Communications. 11, 11 p., 6248.

    Research output: Contribution to journalArticlepeer-review

  2. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In: Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticlepeer-review

  3. New applications of organic LEDs in biophotonics

    Murawski, C., Mischok, A., Keum, C., Kumar, J. D., Pulver, S. R. & Gather, M. C., 2018, Solid-State Lighting, SSL 2018. Optical Society of American (OSA), (Optics InfoBase Conference Papers; vol. Part F117-SSL 2018).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae

    Murawski, C., Morton, A., Samuel, I. D. W., Pulver, S. & Gather, M. C., 14 Nov 2016, Proceedings, Light, Energy and the Environment. Optical Society of American (OSA), 3 p. JW4A.9. (Fourier Transform Spectroscopy).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  5. Selective inhibition mediates the sequential recruitment of motor pools: Correction

    Zwart, M. F., Pulver, S., Truman, J., Fushiki, A., Cardona, A. & Landgraf, M., 17 Aug 2016, In: Neuron. 91, 4, p. 944

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Nature (Journal)

    Will Cresswell (Reviewer)

    21 Dec 2017

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  2. Nature (Journal)

    Will Cresswell (Reviewer)

    11 Nov 2017

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  3. Nature (Journal)

    David Gerard Dritschel (Editor)

    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  4. Nature (Journal)

    Ifor David William Samuel (Editor)

    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity

    Athukoralage, J. S., McMahon, S., Zhang, C., Gruschow, S., Graham, S., Krupovic, M., Whitaker, R., Gloster, T. & White, M., 23 Jan 2020, In: Nature. 577, 7791, p. 572-575 19 p.

    Research output: Contribution to journalArticlepeer-review

  2. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes

    PCAWG Drivers and Functional Interpretation Working Group, PCAWG Structural Variation Working Group & PCAWG Consortium, 6 Feb 2020, In: Nature. 578, 7793, p. 102-111 10 p.

    Research output: Contribution to journalArticlepeer-review

  3. Clustered versus catastrophic global vertebrate declines

    Leung, B., Hargreaves, A. L., Greenberg, D. A., McGill, B., Dornelas, M. & Freeman, R., 10 Dec 2020, In: Nature. 588, 7837, p. 267-271 18 p.

    Research output: Contribution to journalArticlepeer-review

  4. How STRANGE are your study animals?

    Webster, M. M. & Rutz, C., 18 Jun 2020, In: Nature. 582, p. 337-340 4 p.

    Research output: Contribution to journalArticle

ID: 167960967

Top