Skip to content

Research at St Andrews

Analytical solution to heat transfer in compressible laminar flow in a flat minichannel

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 28/08/19)


Cheng Bao, Zeyi Jiang, Xinxin Zhang, John T. S. Irvine

School/Research organisations


Heat transfer in compressible laminar flow in mini-/micro-channels, a classical and general topic in fields of fuel cells, electronics, micro heat exchanger, etc., is revisited. Based on a two-dimensional continuum flow model, analytical solutions of the dimensionless model are achieved in closed-form symbolic algebras of Whittaker eigenfunctions, corresponding to two kinds of boundary conditions with arbitrarily prescribed wall temperature or wall heat flux. As the eigenvalues and eigenfunctions are independent on the dimensionless quantities, which influence the along-the-channel behaviors, the algorithm reveals the common features of compressible laminar thermal flows. The algorithms do not require the assumption of a linear pressure distribution, which is proved to be untenable in some cases (e.g. constant wall heat flux). The algorithms are validated well by the exact (numerical) computations in exemplary cases of both small and moderate Reynolds number, Mach number and Eckert number of air. Although expressed in a series of eigenfunctions, only several terms (sometimes one or two terms) of solutions are required for a practical computation.


Original languageEnglish
Pages (from-to)975-988
Number of pages14
JournalInternational Journal of Heat and Mass Transfer
Issue numberPart C
Early online date28 Aug 2018
StateE-pub ahead of print - 28 Aug 2018

    Research areas

  • Minichannel, Heat transfer, Compressible laminar flow, Analytical solution, Whittaker function

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S. 14 Nov 2018 In : Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticle

  2. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R. 1 Nov 2018 In : Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticle

  3. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P. 1 Nov 2018 In : Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticle

  4. In-situ studies of high temperature thermal batteries: a perspective

    Payne, J. L., Giagloglou, K., Carins, G. M., Crouch, C., Percival, J. D., Smith, R. I., Gover, R. & Irvine, J. T. S. 25 Oct 2018 (Accepted/In press) In : Frontiers in Energy Research.

    Research output: Contribution to journalArticle

  5. Sulfur-tolerant, exsolved Fe–Ni alloy nanoparticles for CO oxidation

    Papaioannou, E. I., Neagu, D., Ramli, W. K. W., Irvine, J. T. S. & Metcalfe, I. S. 5 Oct 2018 In : Topics in Catalysis. First Online, 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling

    Hirata, SC., Goyeau, B., Gobin, D., Carr, M. & Cotta, RM. Apr 2007 In : International Journal of Heat and Mass Transfer. 50, 7-8, p. 1356-1367 12 p.

    Research output: Contribution to journalArticle

ID: 255606953