Skip to content

Research at St Andrews

Anoxic atmospheres on Mars driven by volcanism: implications for past environments and life

Research output: Contribution to journalArticle

Author(s)

Steven F. Sholes, Megan L. Smith, Mark W. Claire, Kevin J. Zahnle, David C. Catling

School/Research organisations

Abstract

Mars today has no active volcanism and its atmosphere is oxidizing, dominated by the photochemistry of CO2 and H2O. Mars experienced widespread volcanism in the past and volcanic emissions should have included reducing gases, such as H2 and CO, as well as sulfur-bearing gases. Using a one-dimensional photochemical model, we consider whether plausible volcanic gas fluxes could have switched the redox-state of the past martian atmosphere to reducing conditions. In our model, the total quantity and proportions of volcanic gases depend on the water content, outgassing pressure, and oxygen fugacity of the source melt. We find that, with reasonable melt parameters, the past martian atmosphere (∼3.5 Gyr to present) could have easily reached reducing and anoxic conditions with modest levels of volcanism, >0.14 km3 yr−1, which are well within the range of estimates from thermal evolution models or photogeological studies. Counter-intuitively we also find that more reducing melts with lower oxygen fugacity require greater amounts of volcanism to switch a paleo-atmosphere from oxidizing to reducing. The reason is that sulfur is more stable in such melts and lower absolute fluxes of sulfur-bearing gases more than compensate for increases in the proportions of H2 and CO. These results imply that ancient Mars should have experienced periods with anoxic and reducing atmospheres even through the mid-Amazonian whenever volcanic outgassing was sustained at sufficient levels. Reducing anoxic conditions are potentially conducive to the synthesis of prebiotic organic compounds, such as amino acids, and are therefore relevant to the possibility of life on Mars. Also, anoxic reducing conditions should have influenced the type of minerals that were formed on the surface or deposited from the atmosphere. We suggest looking for elemental polysulfur (S8) as a signature of past reducing atmospheres. Finally, our models allow us to estimate the amount of volcanically sourced atmospheric sulfate deposited over Mars’ history, approximately ∼106-109 Tmol, with a spread depending on assumed outgassing rate history and magmatic source conditions.
Close

Details

Original languageEnglish
Pages (from-to)46-62
Number of pages17
JournalIcarus
Volume290
Early online date1 Mar 2017
DOIs
Publication statusPublished - 1 Jul 2017

    Research areas

  • Mars atmosphere, Volcanism, Photochemistry, Sulfur, Atmosphere chemistry

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Indigenous organic-oxidized fluid interactions in the Tissint Mars meteorite

    Jaramillo, E. A., Royle, S. H., Claire, M. W., Kounaves, S. P. & Sephton, M. A., 28 Mar 2019, In : Geophysical Research Letters. 46, 6, p. 3090-3098

    Research output: Contribution to journalArticle

  2. Triple oxygen isotope analysis of nitrate using isotope exchange - cavity ringdown laser spectroscopy

    Gázquez, F. & Claire, M. W., 30 Nov 2018, In : Rapid Communications in Mass Spectrometry. 32, 22, p. 1949-1961

    Research output: Contribution to journalArticle

  3. Long-term planetary habitability and the carbonate-silicate cycle

    Rushby, A. J., Johnson, M., Mills, B. J. W., Watson, A. J. & Claire, M. W., 1 May 2018, In : Astrobiology. 18, 5, p. 469-480 12 p.

    Research output: Contribution to journalArticle

  4. Two-billion-year-old evaporites capture Earth's great oxidation

    Blättler, C., Claire, M., Prave, A. R., Zerkle, A. L. & Warke, M. R., 22 Mar 2018, In : Science. eaar2687.

    Research output: Contribution to journalArticle

  5. Evaluation of the Tindouf Basin region in Southern Morocco as an analog site for soil geochemistry on Noachian Mars

    Oberlin, E. A., Claire, M. W. & Kounaves, S., 9 Feb 2018, In : Astrobiology. 18, 8

    Research output: Contribution to journalArticle

Related by journal

  1. Effects of UV-organic interaction and Martian conditions on the survivability of organics

    Laurent, B., Cousins, C. R., Pereira, M. F. C. & Martins, Z., 24 Jan 2019, In : Icarus. In press

    Research output: Contribution to journalArticle

  2. UV luminescence characterisation of organics in Mars-analogue substrates

    Laurent, B., Cousins, C. R., Gunn, M., Huntly, C., Cross, R. & Allender, E., 15 Mar 2019, In : Icarus. 321, p. 929-937

    Research output: Contribution to journalArticle

  3. Global analysis of gully composition using manual and automated exploration of CRISM imagery

    Allender, E. & Stepinksi, T. F., 1 Mar 2018, In : Icarus. 302, p. 319-329 10 p.

    Research output: Contribution to journalArticle

  4. Automatic, exploratory mineralogical mapping of CRISM imagery using summary product signatures

    Allender, E. & Stepinski, T. F., 1 Jan 2017, In : Icarus. 281, p. 151-161 10 p.

    Research output: Contribution to journalArticle

ID: 249277858