Skip to content

Research at St Andrews

Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry

Research output: Research - peer-reviewArticle

DOI

Author(s)

David Evans, Wolfgang Müller, Jonathan Erez

School/Research organisations

Abstract

The process by which foraminifera precipitate calcite from seawater has received much attention, in part because a mechanistic basis for empirical calibrations between shell chemistry and environmental parameters is desirable given their widespread application in palaeoceanography. The incorporation of fluorescent membrane-impermeable molecules into the shell demonstrates that seawater, transported by vacuolisation, is present at the site of calcification. However, recent discussion has focused on whether the calcium required for chamber formation is sourced predominantly by transmembrane Ca transport (TMT), with seawater vacuolisation playing a passive role, or vice versa. This debate has arisen in part because of the need to explain the low Mg/Ca ratio of most foraminifera compared to inorganic calcite. Here, we present trace element data of Operculina ammonoides and Globigerinoides ruber, a high-Mg shallow benthic, and low-Mg planktonic species respectively, cultured under variable seawater carbonate and elemental chemistries. We find that Mg incorporation in high and low-Mg species is characterised by an opposite response to the carbonate system, demonstrating that the negative relationship between Mg/Ca and pH or [ CO32- ] in several low-Mg foraminifera is not an intrinsic feature of foraminiferal (or inorganic) calcite precipitation. Therefore, any biomineralisation model must be able to explain why the mechanism by which seawater Mg/Ca is reduced is impacted by the carbonate system. Moreover, we show that trace element incorporation in G. ruber is consistent with Rayleigh fractionation from unmodified seawater except for Mg-removal, but in very poor agreement with a biomineralisation site [Ca] substantially elevated above that of seawater as required by the TMT hypothesis. In addition, any biomineralisation model must explain the nonlinear relationship between seawater and shell Mg/Ca, and the large number of seawater vacuoles observed in some species. Although there are important inter-species differences in biomineralisation, evident from the observed range of shell Mg/Ca ratios, we argue that these differences are mechanistically related to the degree of Mg exclusion prior to chamber formation. Indeed, whilst our data for both low-Mg and high-Mg species are consistent with biomineralisation via ions sourced through seawater vacuolisation, it is difficult to reconcile many of these observations with a model based on significant transmembrane Ca transport.
Close

Details

Original languageEnglish
JournalGeochimica et Cosmochimica Acta
VolumeIn press
Early online date8 Mar 2018
DOIs
StateE-pub ahead of print - 8 Mar 2018

    Research areas

  • Foraminifera, Biomineralisation, Vacuolisation, Culturing, Mg/Ca

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition

    Hauzer, H., Evans, D., Müller, W., Rosenthal, Y. & Erez, J. 20 Jun 2018 In : Earth and Planetary Science Letters. 497, p. 80-91 12 p.

    Research output: Research - peer-reviewArticle

  2. The accuracy of mid-Pliocene δ18O-based ice volume and sea level reconstructions

    Raymo, M. E., Kozdon, R., Evans, D., Lisiecki, L. & Ford, H. L. Feb 2018 In : Earth Science Reviews. 177, p. 291-302

    Research output: Research - peer-reviewReview article

  3. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry

    Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, P. J. & Affek, H. P. Feb 2018 In : Proceedings of the National Academy of Sciences of the United States of America. 115, 6, p. 1174-1179 6 p.

    Research output: Research - peer-reviewArticle

  4. The evolution of deep ocean chemistry and respired carbon in the Eastern Equatorial Pacific over the last deglaciation

    de la Fuente, M., Calvo, E., Skinner, L., Pelejero, C., Evans, D., Müller, W., Povea, P. & Cacho, I. Dec 2017 In : Paleoceanography and Paleoclimatology. 32, 12, p. 1371-1385 15 p.

    Research output: Research - peer-reviewArticle

Related by journal

  1. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks

    Stueeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. 15 Nov 2017 In : Geochimica et Cosmochimica Acta. 217, p. 80-94

    Research output: Research - peer-reviewArticle

  2. The relationship between mantle pH and the deep nitrogen cycle

    Mikhail, S., Barry, P. H. & Sverjensky, D. A. 15 Jul 2017 In : Geochimica et Cosmochimica Acta. 209, p. 149-160 12 p.

    Research output: Research - peer-reviewArticle

  3. The molybdenum isotopic compositions of I-, S- and A- type granitic suites

    Yang, J., Barling, J., Siebert, C., Fietzke, J., Stephens, E. & Halliday, A. N. 15 May 2017 In : Geochimica et Cosmochimica Acta. 205, p. 168-186 19 p.

    Research output: Research - peer-reviewArticle

  4. Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4·2H2O (gypsum)

    Gázquez, F., Evans, N. P. & Hodell, D. A. 1 Feb 2017 In : Geochimica et Cosmochimica Acta. 198, p. 259-270

    Research output: Research - peer-reviewArticle

ID: 252493118