Skip to content

Research at St Andrews

Assessment of Regression Methods for inference of regulatory networks involved in circadian regulation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Details

Original languageEnglish
Title of host publicationProceedings of the 10th International Workshop on Computational Systems Biology
Pages29-33
Publication statusPublished - 2013

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. BayesPiles: visualisation support for Bayesian network structure learning

    Vogogias, A., Kennedy, J., Archambault, D., Bach, B., Smith, V. A. & Currant, H., Nov 2018, In: ACM Transactions on Intelligent Systems and Technology. 10, 1, 23 p., 5.

    Research output: Contribution to journalArticlepeer-review

  2. MLCut: exploring Multi-Level Cuts in dendrograms for biological data

    Vogogias, A., Kennedy, J., Archaumbault, D., Smith, V. A. & Currant, H., 16 Sep 2016, Computer Graphics and Visual Computing Conference (CGVC) 2016. Turkay, C. & Wan, T. R. (eds.). Eurographics Association

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models

    Koussounadis, A., Langdon, S., Um, I. H., Kay, C., Francis, K., Harrison, D. J. & Smith, V. A., 10 Mar 2016, In: BMC Cancer. 16, 13 p., 205.

    Research output: Contribution to journalArticlepeer-review

  4. Biological network inference at multiple scales: from gene regulation to species interactions

    Aderhold, A., Smith, V. A. & Husmeier, D., 2016, Pattern Recognition in Computational Molecular Biology: Techniques and Approaches. Elloumi, M., Iliopoulos, C. S., Wang, J. T. L. & Zomaya, A. Y. (eds.). Wiley-Blackwell, p. 525-554 (Wiley Book Series on Bioinformatics: Computational Techniques and Engineering).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  5. Novel Monte Carlo approach quantifies data assemblage utility and reveals power of integrating molecular and clinical information for cancer prognosis

    Verleyen, W., Langdon, S. P., Faratian, D., Harrison, D. J. & Smith, V. A., 27 Oct 2015, In: Scientific Reports. 5, 7 p., 15563.

    Research output: Contribution to journalArticlepeer-review

ID: 108812542

Top