Skip to content

Research at St Andrews

Automorphisms of partial endomorphism semigroups

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Joao Araujo, Vitor H. Fernandes, Manuel M. Jesus, Victor Maltcev, James D. Mitchell

School/Research organisations

Abstract

In this paper we propose a general recipe for calculating the automorphism groups of semigroups consisting of partial endomorphisms of relational structures over a finite set with a single m-ary relation for any m is an element of N.

We use this recipe to determine the automorphism groups of the following semigroups: the full transformation semigroup, the partial transformation semigroup, and the symmetric inverse semigroup, the wreath product of two full transformation semigroups, the partial endomorphisms of any partially ordered set, the full spectrum of semigroups of partial mappings preserving or reversing a linear or circular order.

Close

Details

Original languageEnglish
Pages (from-to)23-39
Number of pages17
JournalPubl. Math. Debrecen
Volume79
Issue number1-2
DOIs
Publication statusPublished - Jul 2011

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. GAP – Groups, Algorithms, and Programming, Version 4.11.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 2 Mar 2021

    Research output: Non-textual formSoftware

  2. Libsemigroups

    Mitchell, J. D., 28 May 2020

    Research output: Non-textual formSoftware

  3. Sets of universal sequences for the symmetric group and analogous semigroups

    Hyde, J., Jonušas, J., Mitchell, J. D. & Péresse, Y. H., May 2020, In: Proceedings of the American Mathematical Society. 148, 5, p. 1917-1931

    Research output: Contribution to journalArticlepeer-review

  4. GAP – Groups, Algorithms, and Programming, Version 4.11.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 29 Feb 2020

    Research output: Non-textual formSoftware

  5. GAP – Groups, Algorithms, and Programming, Version 4.10.2

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 19 Jun 2019

    Research output: Non-textual formSoftware

Related by journal

  1. Integral group ring of the Suzuki sporadic simple group

    Bovdi, V. A., Konovalov, A. & Marcos, E. D. N., 2008, In: Publ. Math. Debrecen. 72, 3-4, p. 487-503

    Research output: Contribution to journalArticlepeer-review

  2. On 2-groups of almost maximal class

    Bagiski, C. & Konovalov, A., 2004, In: Publ. Math. Debrecen. 65, 1-2, p. 97-131

    Research output: Contribution to journalArticlepeer-review

ID: 23106699

Top