Skip to content

Research at St Andrews

Bifurcations of limit cycles in a reduced model of the Xenopus tadpole central pattern generator

Research output: Contribution to journalArticlepeer-review


Andrea Ferrario, Robert Merrison-Hort, Stephen R. Soffe, Wen-Chang Li, Roman Borisyuk

School/Research organisations


We present the study of a minimal microcircuit controlling locomotion in two-day-old Xenopus tadpoles. During swimming, neurons in the spinal central pattern generator (CPG) generate anti-phase oscillations between left and right half-centres. Experimental recordings show that the same CPG neurons can also generate transient bouts of long-lasting in-phase oscillations between left-right centres. These synchronous episodes are rarely recorded and have no identified behavioural purpose. However, metamorphosing tadpoles require both anti-phase and in-phase oscillations for swimming locomotion. Previous models have shown the ability to generate biologically realistic patterns of synchrony and swimming oscillations in tadpoles, but a mathematical description of how these oscillations appear is still missing. We define a simplified model that incorporates the key operating principles of tadpole locomotion. The model generates the various outputs seen in experimental recordings, including swimming and synchrony. To study the model, we perform detailed one- and two-parameter bifurcation analysis. This reveals the critical boundaries that separate different dynamical regimes and demonstrates the existence of parameter regions of bi-stable swimming and synchrony. We show that swimming is stable in a significantly larger range of parameters, and can be initiated more robustly, than synchrony. Our results can explain the appearance of long-lasting synchrony bouts seen in experiments at the start of a swimming episode.



Original languageEnglish
Article number10
Number of pages31
JournalJournal of Mathematical Neuroscience
Issue number1
Early online date18 Jul 2018
Publication statusE-pub ahead of print - 18 Jul 2018

    Research areas

  • Bifurcation Analysis, Central patter generator, Swimming, Synchrony, Xenopus Tadpole

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Making in situ whole-cell patch-clamp recordings from Xenopus laevis tadpole neurons

    Li, W-C., 3 Feb 2021, In: Cold Spring Harbor Protocols.

    Research output: Contribution to journalArticlepeer-review

  2. The neuronal mechanisms underlying locomotion termination

    Ritson, E. J. & Li, W-C., Apr 2019, In: Current Opinion in Physiology. 8, p. 109-115 7 p.

    Research output: Contribution to journalReview articlepeer-review

  3. The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate

    Roberts, A., Borisyuk, R., Buhl, E., Ferrario, A., Koutsikou, S., Li, W-C. & Soffe, S. R., Mar 2019, In: Proceedings of the Royal Society B: Biological Sciences. 286, 1899, 7 p., 20190297.

    Research output: Contribution to journalReview articlepeer-review

  4. Stimulation of single, possible CHX10 hindbrain neurons turns swimming on and off in young Xenopus tadpoles

    Li, W-C. & Soffe, S., 18 Feb 2019, In: Frontiers in Cellular Neuroscience. 13, 12 p., 47.

    Research output: Contribution to journalArticlepeer-review

  5. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times

    Koutsikou, S., Merrison-Hort, R., Buhl, E., Ferrario, A., Li, W-C., Borisyuk, R., Soffe, S. R. & Roberts, A., 15 Dec 2018, In: The Journal of Physiology. 596, 24, p. 6219-6233

    Research output: Contribution to journalArticlepeer-review

ID: 255418326