Skip to content

Research at St Andrews

Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Standard

Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. / Hin, Vincent; Harwood, John; de Roos, André M.

In: Ecological Applications, Vol. 29, No. 5, e01903, 07.2019.

Research output: Contribution to journalArticle

Harvard

Hin, V, Harwood, J & de Roos, AM 2019, 'Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply' Ecological Applications, vol. 29, no. 5, e01903. https://doi.org/10.1002/eap.1903

APA

Hin, V., Harwood, J., & de Roos, A. M. (2019). Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. Ecological Applications, 29(5), [e01903]. https://doi.org/10.1002/eap.1903

Vancouver

Hin V, Harwood J, de Roos AM. Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. Ecological Applications. 2019 Jul;29(5). e01903. https://doi.org/10.1002/eap.1903

Author

Hin, Vincent ; Harwood, John ; de Roos, André M. / Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. In: Ecological Applications. 2019 ; Vol. 29, No. 5.

Bibtex - Download

@article{edf03b73d2ac444fb741a93a1afecee4,
title = "Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply",
abstract = "Understanding the full scope of human impact on wildlife populations requires a framework to assess the population‐level repercussions of nonlethal disturbance. The Population Consequences of Disturbance (PCoD) framework provides such an approach, by linking the effects of disturbance on the behavior and physiology of individuals to their population‐level consequences. Bio‐energetic models have been used as implementations of PCoD, as these integrate the behavioral and physiological state of an individual with the state of the environment, to mediate between disturbance and biological significant changes in vital rates (survival, growth, and reproduction). To assess which levels of disturbance lead to adverse effects on population growth rate requires a bio‐energetic model that covers the complete life cycle of the organism under study. In a density‐independent setting, the expected lifetime reproductive output of a single female can then be used to predict the level of disturbance that leads to population decline. Here, we present such a model for a medium‐sized cetacean, the long‐finned pilot whale (Globicephala melas). Disturbance is modeled as a yearly recurrent period of no resource feeding for the pilot whale female and her calf. Short periods of disturbance lead to the pre‐weaned death of the first one or more calves of the young female. Higher disturbance levels also affect survival of calves produced later in the life of the female, in addition to degrading female survival. The level of disturbance that leads to a negative population growth rate strongly depends on the available resources in the environment. This has important repercussion for the timing of disturbance if resource availability fluctuates seasonally. The model predicts that pilot whales can tolerate on average three times longer periods of disturbance in seasons of high resource availability, compared to disturbance happening when resources are low. Although our model is specifically parameterized for pilot whales, it provides useful insights into the general consequences of nonlethal disturbance. If appropriate data on life history and energetics are available, it can be used to provide management advice for specific species or populations.",
keywords = "Cetacean life history, Dynamic Energy Budget model, Globicephala melas, Lifetime reproductive output, Marine mammals, Population consequences of disturbance, Vital rates",
author = "Vincent Hin and John Harwood and {de Roos}, {Andr{\'e} M.}",
note = "This research was supported by the Office of Naval Research grant N00014-16-1-2858: {"}PCoD+: Developing widely-applicable models of the population consequences of disturbance”. VH and AMdR benefitted from funding from the European Research Council under the European Union’s Seventh Framework rogramme (F /2007-2013) / ERC Grant Agreement No. 322814 awarded to AMdR.",
year = "2019",
month = "7",
doi = "10.1002/eap.1903",
language = "English",
volume = "29",
journal = "Ecological Applications",
issn = "1051-0761",
publisher = "John Wiley & Sons, Ltd.",
number = "5",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply

AU - Hin, Vincent

AU - Harwood, John

AU - de Roos, André M.

N1 - This research was supported by the Office of Naval Research grant N00014-16-1-2858: "PCoD+: Developing widely-applicable models of the population consequences of disturbance”. VH and AMdR benefitted from funding from the European Research Council under the European Union’s Seventh Framework rogramme (F /2007-2013) / ERC Grant Agreement No. 322814 awarded to AMdR.

PY - 2019/7

Y1 - 2019/7

N2 - Understanding the full scope of human impact on wildlife populations requires a framework to assess the population‐level repercussions of nonlethal disturbance. The Population Consequences of Disturbance (PCoD) framework provides such an approach, by linking the effects of disturbance on the behavior and physiology of individuals to their population‐level consequences. Bio‐energetic models have been used as implementations of PCoD, as these integrate the behavioral and physiological state of an individual with the state of the environment, to mediate between disturbance and biological significant changes in vital rates (survival, growth, and reproduction). To assess which levels of disturbance lead to adverse effects on population growth rate requires a bio‐energetic model that covers the complete life cycle of the organism under study. In a density‐independent setting, the expected lifetime reproductive output of a single female can then be used to predict the level of disturbance that leads to population decline. Here, we present such a model for a medium‐sized cetacean, the long‐finned pilot whale (Globicephala melas). Disturbance is modeled as a yearly recurrent period of no resource feeding for the pilot whale female and her calf. Short periods of disturbance lead to the pre‐weaned death of the first one or more calves of the young female. Higher disturbance levels also affect survival of calves produced later in the life of the female, in addition to degrading female survival. The level of disturbance that leads to a negative population growth rate strongly depends on the available resources in the environment. This has important repercussion for the timing of disturbance if resource availability fluctuates seasonally. The model predicts that pilot whales can tolerate on average three times longer periods of disturbance in seasons of high resource availability, compared to disturbance happening when resources are low. Although our model is specifically parameterized for pilot whales, it provides useful insights into the general consequences of nonlethal disturbance. If appropriate data on life history and energetics are available, it can be used to provide management advice for specific species or populations.

AB - Understanding the full scope of human impact on wildlife populations requires a framework to assess the population‐level repercussions of nonlethal disturbance. The Population Consequences of Disturbance (PCoD) framework provides such an approach, by linking the effects of disturbance on the behavior and physiology of individuals to their population‐level consequences. Bio‐energetic models have been used as implementations of PCoD, as these integrate the behavioral and physiological state of an individual with the state of the environment, to mediate between disturbance and biological significant changes in vital rates (survival, growth, and reproduction). To assess which levels of disturbance lead to adverse effects on population growth rate requires a bio‐energetic model that covers the complete life cycle of the organism under study. In a density‐independent setting, the expected lifetime reproductive output of a single female can then be used to predict the level of disturbance that leads to population decline. Here, we present such a model for a medium‐sized cetacean, the long‐finned pilot whale (Globicephala melas). Disturbance is modeled as a yearly recurrent period of no resource feeding for the pilot whale female and her calf. Short periods of disturbance lead to the pre‐weaned death of the first one or more calves of the young female. Higher disturbance levels also affect survival of calves produced later in the life of the female, in addition to degrading female survival. The level of disturbance that leads to a negative population growth rate strongly depends on the available resources in the environment. This has important repercussion for the timing of disturbance if resource availability fluctuates seasonally. The model predicts that pilot whales can tolerate on average three times longer periods of disturbance in seasons of high resource availability, compared to disturbance happening when resources are low. Although our model is specifically parameterized for pilot whales, it provides useful insights into the general consequences of nonlethal disturbance. If appropriate data on life history and energetics are available, it can be used to provide management advice for specific species or populations.

KW - Cetacean life history

KW - Dynamic Energy Budget model

KW - Globicephala melas

KW - Lifetime reproductive output

KW - Marine mammals

KW - Population consequences of disturbance

KW - Vital rates

U2 - 10.1002/eap.1903

DO - 10.1002/eap.1903

M3 - Article

VL - 29

JO - Ecological Applications

T2 - Ecological Applications

JF - Ecological Applications

SN - 1051-0761

IS - 5

M1 - e01903

ER -

Related by author

  1. Population-level consequences of seismic surveys on fishes: an interdisciplinary challenge

    Slabbekoorn, H., Dalen, J., de Haan, D., Winter, H. V., Radford, C., Ainslie, M. A., Heaney, K. D., van Kooten, T., Thomas, L. & Harwood, J., Jul 2019, In : Fish and Fisheries. 20, 4, p. 653-685 33 p.

    Research output: Contribution to journalArticle

  2. Anthropogenic disturbance in a changing environment: modelling lifetime reproductive success to predict the consequences of multiple stressors on a migratory population

    Pirotta, E., Mangel, M., Costa, D. P., Goldbogen, J., Harwood, J., Hin, V., Irvine, L. M., Mate, B. R., McHuron, E. A., Palacios, D. M., Schwarz, L. K. & New, L., 17 May 2019, In : Oikos. Early View, 18 p.

    Research output: Contribution to journalArticle

  3. Understanding the population consequences of disturbance

    Pirotta, E., Booth, C. G., Costa, D. P., Fleishman, E., Kraus, S. D., Lusseau, D., Moretti, D., New, L. F., Schick, R. S., Schwarz, L. K., Simmons, S. E., Thomas, L., Tyack, P. L., Weise, M. J., Wells, R. S. & Harwood, J., 12 Sep 2018, In : Ecology and Evolution. Early View, 13 p.

    Research output: Contribution to journalReview article

  4. A simulation approach to assessing environmental risk of sound exposure to marine mammals

    Donovan, C. R., Harris, C. M., Milazzo, L., Harwood, J., Marshall, L. & Williams, R., Apr 2017, In : Ecology and Evolution. 7, 7, p. 2101-2111 11 p.

    Research output: Contribution to journalArticle

  5. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals

    Tyack, P. L., Bailey, H., Crocker, D., Estes, J. E., Francis, C. D., Harwood, J., Schwacke, L., Thomas, L. J. & Wartzok, D., 2017, Washington DC: National Academies Press. 146 p.

    Research output: Book/ReportCommissioned report

Related by journal

  1. Ecological Applications (Journal)

    Ken B Newman (Editor)
    2004 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Effects of impulsive noise on marine mammals: investigating range-dependent risk

    Hastie, G., Merchant, N., Goetz, T., Russell, D. J. F., Thompson, P. & Janik, V. M., Jul 2019, In : Ecological Applications. 29, 5, 10 p., e01906.

    Research output: Contribution to journalArticle

  2. Model-based approaches to deal with detectability: a comment on Hutto (2016a)

    Marques, T. A., Thomas, L., Kery, M., Buckland, S. T., Borchers, D. L., Rexstad, E., Fewster, R. M., Mackenzie, D. I., Royle, J. A., Guillera-Arroita, G., Handel, C. M., Pavlacky, D. C. & Camp, R. J., Jul 2017, In : Ecological Applications. 27, 5, p. 1694-1698 5 p.

    Research output: Contribution to journalLetter

  3. Re-evaluation of individual diameter: height allometric models to improve biomass estimation of tropical trees

    Ledo, A., Cornulier, T., Illian, J. B., Iida, Y., Kassim, A. R. & Burslem, D. F. R. P., 1 Dec 2016, In : Ecological Applications. 26, 8, p. 2374-2380 7 p.

    Research output: Contribution to journalArticle

  4. Sperm whales reduce foraging effort during exposure to 1-2 kH z sonar and killer whale sounds

    Isojunno, S., Curé, C., Kvadsheim, P. H., Lam, F-P. A., Tyack, P. L., Wensveen, P. J. & Miller, P. J. OM., 8 Feb 2016, In : Ecological Applications. 26, 1, p. 77-93 17 p.

    Research output: Contribution to journalArticle

ID: 258659176