Skip to content

Research at St Andrews

Biogeography of the global ocean's mesopelagic zone

Research output: Contribution to journalArticle


The global ocean’s near-surface can be partitioned into distinct provinces on the basis of regional primary productivity and oceanography [1]. This ecological geography provides a valuable framework for understanding spatial variability in ecosystem function, but has relevance only part way into the epipelagic zone (the top 200 m). The mesopelagic (200-1,000 m) makes up c. 20% of the global ocean volume, plays important roles in biogeochemical cycling [2], and holds potentially huge fish resources [3–5]. It is however hidden from satellite observation, and a lack of globally-consistent data has prevented development of a global-scale understanding. Acoustic Deep Scattering Layers (DSLs) are prominent features of the mesopelagic. These vertically-narrow (10s-100s of m) but horizontally-extensive (continuous for 10s-1,000s of km) layers comprise fish and zooplankton, and are readily detectable using echosounders. We have compiled a database of DSL characteristics globally. We show here that DSL depth and acoustic backscattering intensity (a measure of biomass) can be modelled accurately using just surface primary productivity, temperature and wind-stress. Spatial variability in these environmental factors leads to a natural partition of the mesopelagic into 10 distinct classes. These classes demark a more complex biogeography than the latitudinally-banded schemes proposed before [6,7]. Knowledge of how environmental factors influence the mesopelagic enables future change to be explored: we predict that by 2100 there will be widespread homogenisation of mesopelagic communities, and that mesopelagic biomass could increase by c. 17%. The biomass increase requires increased trophic efficiency, which could arise because of ocean warming and DSL shallowing.


Original languageEnglish
Pages (from-to)113-119
Number of pages7
JournalCurrent Biology
Issue number1
Early online date22 Dec 2016
Publication statusPublished - 9 Jan 2017

    Research areas

  • Pelagic ecology, Ecological geography, Environmental change, Trophic efficiency, Ocean warming, Marine acoustics, Deep scattering layers, Longhurst, Myctophid

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass

    Proud, R., Handegard, N. O., Kloser, R., Cox, M. & Brierley, A. S., May 2019, In : ICES Journal of Marine Science. 76, 3, p. 718-733

    Research output: Contribution to journalArticle

  2. Internal lee waves and baroclinic bores over a tropical seamount shark ‘hot-spot’

    Hosegood, P. J., Nimmo-Smith, W. A. M., Proud, R., Adams, K. & Brierley, A. S., Mar 2019, In : Progress in Oceanography. 172, p. 34-50 17 p.

    Research output: Contribution to journalArticle

  3. Use of micronekton data and models to improve ecology of top predators

    Proud, R. & Brierley, A. S., 30 Nov 2018, Zenodo. 23 p.

    Research output: Book/ReportCommissioned report

Related by journal

  1. Current Biology (Journal)

    Kate Arnold (Reviewer)
    2007 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  2. Current Biology (Journal)

    Richard William Byrne (Member of editorial board)

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Animal syntax

    Suzuki, T. N. & Zuberbühler, K., 22 Jul 2019, In : Current Biology. 29, 14, p. R669-R671

    Research output: Contribution to journalShort survey

  2. Cooperation in children

    Slocombe, K. E. & Seed, A. M., 3 Jun 2019, In : Current Biology. 29, 11, p. R470-R473 4 p.

    Research output: Contribution to journalArticle

  3. Formant modification through vocal production learning in gray seals

    Stansbury, A. & Janik, V. M., 8 Jul 2019, In : Current Biology. 29, 13, p. 2244-2249 6 p., e4.

    Research output: Contribution to journalArticle

  4. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees

    Surbeck, M., Boesch, C., Crockford, C., Emery Thompson, M., Furuichi, T., Fruth, B., Hohmann, G., Ishizuka, S., Machanda, Z., Muller, M. M., Pusey, A., Sakamaki, T., Tokuyama, N., Walker, K., Wragham, R., Wroblewski, E., Zuberbuhler, K., Vigilant, L. & Langergraber, K., 20 May 2019, In : Current Biology. 29, 10, p. R354-R355

    Research output: Contribution to journalArticle

  5. The greenbeard effect

    Gardner, A., Jun 2019, In : Current Biology. 29, 11, p. R430-R431

    Research output: Contribution to journalArticle

ID: 247263482