Skip to content

Research at St Andrews

Biological cohesion as the architect of bed movement under wave action

Research output: Contribution to journalArticlepeer-review

DOI

Open Access Status

  • Embargoed (until 14/07/21)

Author(s)

Xindi Chen, Changkuan Zhang, Ian Townend, David M. Paterson, Zheng Gong, Qin Jiang, Qian Feng, Xiping Yu

School/Research organisations

Abstract

Cohesive extracellular polymeric substances (EPS) generated by microorganisms abundant on Earth are regarded as bed “stabilizers” increasing the erosion threshold in sedimentary systems. However, most observations of this phenomenon have been taken under steady flow conditions. In contrast, we present how EPS affect the bed movement under wave action, showing a destabilization of the system. We demonstrate a complex behavior of the bio‐sedimentary deposits, which encompasses liquefaction, mass motion, varying bed formations and erosion, depending on the amount of EPS present. Small quantities of EPS induce higher mobility of the sediments, liquefying an otherwise stable bed. Bed with larger quantities of EPS undergoes a synchronized mechanical oscillation. Our analysis clarifies how biological cohesion can potentially put coastal wetlands at risk by increasing their vulnerability to waves. These findings lead to a revised understanding of the different roles played by microbial life, and their importance as mediators of seabed mobility.
Close

Details

Original languageEnglish
Article numbere2020GL092137
JournalGeophysical Research Letters
Volume48
Issue number5
Early online date14 Jan 2021
DOIs
Publication statusPublished - 16 Mar 2021

    Research areas

  • Bed stability, Biological cohesion, Biostabilization, Coastal safety, Sediment erosion, Wave action

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Ecosystem engineers drive differing microbial community composition in intertidal estuarine sediments

    Wyness, A. J., Fortune, I., Blight, A. J., Browne, P., Hartley, M., Holden, M. & Paterson, D. M., 19 Feb 2021, In: PLoS ONE. 16, 2, 20 p., e0240952.

    Research output: Contribution to journalArticlepeer-review

  2. Editorial: Advances and challenges in microphytobenthos research: from cell biology to coastal ecosystem function

    Serôdio, J., Paterson, D. M., Méléder, V. & Vyverman, W., 12 Nov 2020, In: Frontiers in Marine Science. 7, 3 p., 608729.

    Research output: Contribution to journalEditorialpeer-review

  3. Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems

    Hope, J., Malarkey, J., Baas, J., Peakall, J., Parsons, D., Manning, A. J., Bass, S., Lichtman, I., Thorne, P., Ye, L. & Paterson, D. M., Oct 2020, In: Limnology and Oceanography. 65, 10, p. 2403-2419 17 p.

    Research output: Contribution to journalArticlepeer-review

  4. Biomediation of submarine sediment gravity flow dynamics

    Craig, M. J., Baas, J. H., Amos, K. J., Strachan, L. J., Manning, A. J., Paterson, D. M., Hope, J. A., Nodder, S. D. & Baker, M. L., Jan 2020, In: Geology. 48, 1, p. 72-76

    Research output: Contribution to journalArticlepeer-review

  5. Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS

    Baas, J. H., Baker, M. L., Malarkey, J., Bass, S. J., Manning, A. J., Hope, J. A., Peakall, J., Lichtman, I. D., Ye, L., Davies, A. G., Parsons, D. R., Paterson, D. M. & Thorne, P. D., Dec 2019, In: Sedimentology. 66, 7, p. 2749-2768 20 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Classifying oceanographic structures in the Amundsen Sea, Antarctica

    Boehme, L. & Rosso, I., 16 Mar 2021, In: Geophysical Research Letters. 48, 5, e2020GL089412.

    Research output: Contribution to journalArticlepeer-review

  2. Orbital forcing strongly influences seasonal temperature trends during the last millennium

    Lücke, L. J., Schurer, A. P., Wilson, R. & Hegerl, G. C., 22 Feb 2021, In: Geophysical Research Letters. 48, 4, 13 p., e2020GL088776.

    Research output: Contribution to journalArticlepeer-review

  3. The effect of melt pond geometry on the distribution of solar energy under first-year sea ice

    Horvat, C., Flocco, D., Rees Jones, D. W., Roach, L. & Golden, K. M., 17 Feb 2020, In: Geophysical Research Letters. 47, 4, e2019GL085956.

    Research output: Contribution to journalArticlepeer-review

  4. Wind-driven evolution of the North Pacific subpolar gyre over the last deglaciation

    Gray, W. R., Wills, R. CJ., Rae, J. W. B., Burke, A., Ivanovic, R. F., Roberts, W. HG., Ferreira, D. & Valdes, P. J., 17 Mar 2020, In: Geophysical Research Letters. 47, 6, e2019GL086328.

    Research output: Contribution to journalArticlepeer-review

ID: 272523819

Top