Skip to content

Research at St Andrews

Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle.We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans.
Close

Details

Original languageEnglish
Pages (from-to)2458-2468
Number of pages11
JournalJournal of Experimental Biology
Volume219
Issue number16
Early online date13 Jun 2016
DOIs
StatePublished - 17 Aug 2016

    Research areas

  • Body condition, Lipid, Hydrodynamic performance, Drag, Buoyancy

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance

    Narazaki, T., Isojunno, S., Nowacek, D. P., Swift, R., Friedlaender, A. S., Ramp, C., Smout, S., Aoki, K., Deecke, V. B., Sato, K. & Miller, P. J. O. 12 Jul 2018 In : PLoS ONE. 13, 7, 23 p., e0200287

    Research output: Contribution to journalArticle

  2. Breathing patterns indicate cost of exercise during diving and response to experimental sound exposures in long-finned pilot whales

    Isojunno, S., Aoki, K., Curé, C., Kvadsheim, P. & Miller, P. 25 Oct 2018 In : Frontiers in Physiology. 9, 17 p., 1462

    Research output: Contribution to journalArticle

  3. Vocal foragers and silent crowds: context-dependent vocal variation in Northeast Atlantic long-finned pilot whales

    Visser, F., Kok, A. C. M., Oudejans, M. G., Scott-Hayward, L. A. S., DeRuiter, S. L., Alves, A. C., Antunes, R. N., Isojunno, S., Pierce, G. J., Slabbekoorn, H., Huisman, J. & Miller, P. J. O. Dec 2017 In : Behavioral Ecology and Sociobiology. 71, 13 p., 170

    Research output: Contribution to journalArticle

  4. Individual, ecological, and anthropogenic influences on activity budgets of long-finned pilot whales

    Isojunno, S., Sadykova, D., DeRuiter, S., Curé, C., Visser, F., Thomas, L., Miller, P. J. O. & Harris, C. M. Dec 2017 In : Ecosphere. 8, 12, 26 p., e02044

    Research output: Contribution to journalArticle

Related by journal

  1. Dive heart rate in harbour porpoises is influenced by exercise and expectations

    McDonald, B., Johnson, M. & Madsen, P. 9 Jan 2018 In : Journal of Experimental Biology. 221, 1, jeb168740

    Research output: Contribution to journalArticle

  2. High field metabolic rates of wild harbour porpoises

    Rojano-Doñate, L., McDonald, B. I., Wisniewska, D. M., Johnson, M., Teilmann, J., Wahlberg, M., Højer-Kristensen, J. & Madsen, P. T. 6 Dec 2018 In : Journal of Experimental Biology. 221, 23, 12 p., jeb185827

    Research output: Contribution to journalArticle

  3. No experimental evidence of stress-induced hyperthermia in zebrafish (Danio rerio)

    Jones, N. A. R., Mendo, T., Broell, F. & Webster, M. M. 17 Dec 2018 In : Journal of Experimental Biology. In press, jeb.192971

    Research output: Contribution to journalArticle

  4. Selective reactions to different killer whale call categories in two delphinid species

    Bowers, M. T., Friedlaender, A. S., Janik, V. M., Nowacek, D. P., Quick, N., Southall, B. L. & Read, A. 12 Jun 2018 In : Journal of Experimental Biology. 221, 12 p.

    Research output: Contribution to journalArticle

  5. Turbulent flow reduces oxygen consumption in the labriform swimming shiner perch, Cymatogaster aggregata

    van der Hoop, J. M., Byron, M. L., Ozolina, K., Miller, D. L., Johansen, J. L., Domenici, P. & Steffensen, J. F. 12 Jun 2018 In : Journal of Experimental Biology. 221, 11, 11 p., 168773

    Research output: Contribution to journalArticle

ID: 243531052