Skip to content

Research at St Andrews

Body mass change strategies in blackbirds Turdus merula: the starvation-predation risk trade-off

Research output: Contribution to journalArticle

Author(s)

R MacLeod, RB Barnett, J Clark, Will Cresswell

School/Research organisations

Abstract

1. It is theoretically well established that body mass in birds is the consequence of a trade-off between starvation risk and predation risk. There are, however, no studies of mass variation from sufficiently large wild populations to model in detail the range of diurnal and seasonal mass change patterns in natural populations and how these are linked to the complex environmental and biological variables that may affect the trade-off.

2. This study used data on 17 000 individual blackbirds Turdus merula to model how mass changes diurnally and seasonally over the whole year and over a wide geographical area. Mass change was modelled in respect of temperature, rainfall, day length, geographical location, time of day and time of year and the results show how these mass changes vary with individual size, age and sex.

3. The hypothesis that seasonal mass is optimized over the year and changes in line with predictors of foraging uncertainty was tested. As theory predicts, reduced day length and reduced temperature result in increased mass and the expected seasonal peak of mass in midwinter.

4. The hypothesis that diurnal mass gain is optimized in terms of starvation-predation risk trade-off theory was also tested. The results provide the first empirical evidence for intraspecies seasonal changes in diurnal mass gain patterns. These changes are consistent with shifts in the relative importance of starvation risk and predation risk and with the theory of mass-dependent predation risk.

5. In winter most mass was gained in the morning, consistent with reducing starvation risk. In contrast, during the August-November non-breeding period a bimodal pattern of mass gain, with increases just after dawn and before dusk, was adopted and the majority of mass gain occurred at the end of the day consistent with reducing mass-dependent predation risk. The bimodal diurnal mass gain pattern described here is the first evidence that bird species in the wild gain mass in this theoretically predicted pattern.

Close

Details

Original languageEnglish
Pages (from-to)292 - 302
Number of pages11
JournalJournal of Animal Ecology
Volume74
DOIs
Publication statusPublished - Mar 2005

    Research areas

  • blackbird, diurnal mass gain, energy reserves, mass change, mass-dependent predation, TIT PARUS-MAJOR, IMPAIRED FLIGHT ABILITY, DAILY SINGING ROUTINES, FAT RESERVES, GREAT TIT, EUROPEAN ROBINS, CAPTIVE GREENFINCHES, DEPENDENT PREDATION, WINTERING BIRDS, DYNAMIC-MODEL

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Light stalks increase the precision and accuracy of non-breeding locations calculated from geolocator tags: a field test from a long-distance migrant

    Blackburn, E., Burgess, M., Freeman, B., Riseley, A., Azang, A., Ivande, S. T., Hewson, C. & Cresswell, W., 28 Nov 2019, In : Bird Study. Latest Articles

    Research output: Contribution to journalArticle

  2. A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird

    Nwaogu, C. J., Galema, A., Cresswell, W., Dietz, M. W. & Tieleman, B. I., 4 Nov 2019, (Accepted/In press) In : Journal of Animal Ecology. In press

    Research output: Contribution to journalArticle

  3. Weak breeding seasonality of a songbird in a seasonally arid tropical environment arises from individual flexibility and strongly seasonal moult

    Nwaogu, C. J., Tieleman, B. I. & Cresswell, W., Jul 2019, In : Ibis. 161, 3, p. 533-545 13 p.

    Research output: Contribution to journalArticle

  4. Seasonal differences in baseline innate immune function are better explained by environment than annual cycle stage in a year-round breeding tropical songbird

    Nwaogu, C. J., Cresswell, W., Versteegh, M. A. & Tieleman, B. I., 8 Apr 2019, In : Journal of Animal Ecology. 88, 4, p. 537-553 17 p.

    Research output: Contribution to journalArticle

Related by journal

  1. A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird

    Nwaogu, C. J., Galema, A., Cresswell, W., Dietz, M. W. & Tieleman, B. I., 4 Nov 2019, (Accepted/In press) In : Journal of Animal Ecology. In press

    Research output: Contribution to journalArticle

  2. Environment-sensitive mass changes influence breeding in a capital breeding marine top predator

    Smout, S. C., King, R. & Pomeroy, P., 20 Nov 2019, In : Journal of Animal Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  3. Optimizing the use of biologgers for movement ecology research

    Williams, H., Taylor, L., Benhamou, S., Bijleveld, A., Clay, T., de Grissac, S., Demsar, U., English, H., Franconi, N., Gómez-Laich, A., Griffiths, R., Kay, W., Morales, J. M., Potts, J., Rogerson, K., Rutz, C., Spelt, A., Trevail, A., Wilson, R. & Börger, L., 1 Oct 2019, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  4. Seasonal differences in baseline innate immune function are better explained by environment than annual cycle stage in a year-round breeding tropical songbird

    Nwaogu, C. J., Cresswell, W., Versteegh, M. A. & Tieleman, B. I., 8 Apr 2019, In : Journal of Animal Ecology. 88, 4, p. 537-553 17 p.

    Research output: Contribution to journalArticle

  5. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket

    Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T., 5 Mar 2018, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

ID: 298745

Top