Skip to content

Research at St Andrews

Boosting CO2 electrolysis performance: via calcium-oxide-looping combined with in situ exsolved Ni-Fe nanoparticles in a symmetrical solid oxide electrolysis cell

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 11/07/21)

Author(s)

Yunfeng Tian, Yun Liu, Aaron Naden, Lichao Jia, Min Xu, Wen Cui, Bo Chi, Jian Pu, John T.S. Irvine, Jian Li

School/Research organisations

Abstract

The electrocatalysis of CO2 to valuable chemical products is an important strategy to combat global warming. Symmetrical solid oxide electrolysis cells have been extensively recognized for their CO2 electrolysis abilities due to their high efficiency, low cost, and reliability. Here, we produced a novel electrode containing calcium oxide-looping and in situ exsolved Ni–Fe nanoparticles by performing a one-step reduction of La0.6Ca0.4Fe0.8Ni0.2O3−δ (LCaFN). The CO2 captured by CaO was electrolyzed in situ by the Ni–Fe nanocatalysts. The cell with this special cathode showed a higher current density (0.632 A cm−2vs. 0.32 A cm−2) and lower polarization resistance (0.399 Ω cm2vs. 0.662 Ω cm2) than the unreduced LCaFN cathode at 800 °C with an applied voltage of 1.3 V. Use of the developed novel electrode offers a promising strategy for CO2 electrolysis.
Close

Details

Original languageEnglish
Pages (from-to)14895-14899
Number of pages5
JournalJournal of Materials Chemistry A
Volume8
Issue number30
Early online date11 Jul 2020
DOIs
Publication statusPublished - 14 Aug 2020

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical solid oxide cell

    Tian, Y., Liu, Y., Jia, L., Naden, A., Chen, J., Chi, B., Pu, J., Irvine, J. T. S. & Li, J., 16 Aug 2020, In : Journal of Power Sources. 475, 228620.

    Research output: Contribution to journalArticle

  2. Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions

    Lee, J., Myung, J., Naden, A. B., Jeon, O. S., Shul, Y. G. & Irvine, J. T. S., 30 Jan 2020, In : Advanced Energy Materials. Early View, 1903693.

    Research output: Contribution to journalArticle

  3. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  4. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  5. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

Related by journal

  1. Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: spin-orbit coupling: versus lattice strain

    Chatterjee, S., Payne, J., Irvine, J. T. S. & Pal, A. J., 28 Feb 2020, In : Journal of Materials Chemistry A. 8, 8, p. 4416-4427 12 p.

    Research output: Contribution to journalArticle

  2. Hiding extra-framework cations in zeolites L and Y by internal ion exchange and its effect on CO2 adsorption

    Lozinska, M. M., Miller, D. N., Brandani, S. & Wright, P. A., 23 Jan 2020, In : Journal of Materials Chemistry A. Advance Article

    Research output: Contribution to journalArticle

  3. Lithiation of V2O3(SO4)2 - a flexible insertion host

    Linnell, S. F., Payne, J. L., Pickup, D. M., Chadwick, A. V., Armstrong, A. R. & Irvine, J. T. S., 7 Oct 2020, In : Journal of Materials Chemistry A. 8, 37, p. 19502-19512 11 p.

    Research output: Contribution to journalArticle

  4. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

ID: 269686339

Top