Skip to content

Research at St Andrews

Boron isotopes and B/Ca ratios in benthic foraminifera: proxies for the deep ocean carbonate system

Research output: Contribution to journalArticle

Author(s)

James William Buchanan Rae, Gavin L. Foster, Daniela N. Schmidt, Tim Elliott

School/Research organisations

Abstract

Accurate records of the state of the ocean carbonate system are critical for understanding past changes in pCO2, ocean acidification and climate. The chemical principles underlying the proxy of oceanic pH provided by the boron isotope ratio of foraminiferal carbonate are relatively well understood, but the proxy's reliability has been questioned. We present 76 new Multi-Collector Inductively-Coupled Plasma Mass Spectrometry (MC-ICPMS) δ11B measurements on a range of benthic foraminifera from 23 late-Holocene samples from the Atlantic that reaffirm the utility of the δ11B-pH proxy. Our boron isotope measurements on ~ 10 benthic foraminifera tests typically yield a precision of ~ ± 0.25‰ at 2 s.d. (equivalent to ~ ± 0.03 pH units). δ11B values of epifaunal species are within analytical uncertainty of those predicted from a simple model assuming sole incorporation of B(OH)4− from seawater and no vital effects, using the independently determined fractionation factor of 1.0272 between 11B/10B of aqueous boron species. Infaunal foraminifera are consistent with this model, but record the combined effects of lower pore-water δ11B and pH. No influence of partial dissolution or shell size on δ11B is observed. We have also measured the B/Ca ratios of the same samples. For individual Cibicidoides species, B/Ca shows a good correlation with Δ[CO32−], but the B/Ca of different co-occurring species morphotypes varies considerably. These effects are not seen in δ11B, which may therefore provide a more robust proxy of the ocean carbonate system. Whilst in theory δ11B and B/Ca can be combined to provide a quantitative reconstruction of alkalinity and dissolved inorganic carbonate (DIC), in practice this is precluded by propagated uncertainties. δ11B data give significant constraints on foraminifera calcification mechanisms, and seem most simply explained by incorporation of B(OH)4− into a HCO3− pool, which is then completely incorporated in foraminiferal CaCO3. Our demonstration of the predictable variation of δ11B with pH, across a wide range of species and locations, provides confidence in the application of MC-ICPMS measurements of foraminiferal δ11B to reconstruct past changes in the ocean carbonate system.
Close

Details

Original languageEnglish
Pages (from-to)403-413
JournalEarth and Planetary Science Letters
Volume302
Issue number3-4
DOIs
Publication statusPublished - 1 Feb 2011

    Research areas

  • boron isotopes, B/Ca, foraminifera, pH, proxy, pore water

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales

    Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole, C., Greenop, R., Li, T., Littley, E., Nita, D. C., Stewart, J. A. & Taylor, B., 24 Oct 2018, In : Nature. 562, p. 569-573 16 p.

    Research output: Contribution to journalLetter

  2. The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry

    Allison, N., Cole, C., Hintz, C., Hintz, K., Rae, J. & Finch, A., 10 Oct 2018, In : Chemical Geology. 497, p. 162-169 8 p.

    Research output: Contribution to journalArticle

  3. Distribution and ecology of planktic foraminifera in the North Pacific: implications for paleo-reconstructions

    Taylor, B. J., Rae, J. W. B., Gray, W. R., Darling, K., Burke, A., Gersonde, R., Abelmann, A., Maier, E., Esper, O. & Ziveri, P., 1 Jul 2018, In : Quaternary Science Reviews. 191, p. 256-274 19 p.

    Research output: Contribution to journalArticle

  4. What fraction of the Pacific and Indian oceans' deep water is formed in the Southern Ocean?

    Rae, J. W. B. & Broecker, W., 21 Jun 2018, In : Biogeosciences. 15, p. 3779-3794 16 p.

    Research output: Contribution to journalArticle

  5. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean

    Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B., Burke, A., Foster, G. L. & Lear, C. H., 23 Apr 2018, In : Nature Geoscience. 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Earth and Planetary Science Letters (Journal)

    Chris Hawkesworth (Member of editorial board)
    19851993

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”

    Ahms, A-S., Maloof, A., Macdonald, F., Hoffman, P., Bjerrum, C., Bold, U., Rose, C. V., Strauss, J. & Higgins, J., 15 Jan 2019, In : Earth and Planetary Science Letters. 506, p. 292-307 16 p.

    Research output: Contribution to journalArticle

  2. Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores

    Burke, A., Moore, K. A., Sigl, M., Nita, D. C., McConnell, J. R. & Adkins, J. F., 20 Jun 2019, In : Earth and Planetary Science Letters. 521, p. 113-119 7 p.

    Research output: Contribution to journalArticle

  3. Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition

    Hauzer, H., Evans, D., Müller, W., Rosenthal, Y. & Erez, J., 1 Sep 2018, In : Earth and Planetary Science Letters. 497, p. 80-91 12 p.

    Research output: Contribution to journalArticle

  4. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy

    Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N. & Lear, C. H., 15 Sep 2018, In : Earth and Planetary Science Letters. 498, p. 362-376 15 p.

    Research output: Contribution to journalArticle

  5. Cryogenic silicification of microorganisms in hydrothermal fluids

    Fox-Powell, M. G., Channing, A., Applin, D., Cloutis, E., Preston, L. J. & Cousins, C. R., 15 Sep 2018, In : Earth and Planetary Science Letters. 498, p. 1-8 8 p.

    Research output: Contribution to journalArticle

ID: 56298991