Skip to content

Research at St Andrews

Calculation of a standard reformed biogas composition and testing on SOFC anode powders

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

Stephen Richard Gamble, Dragos Neagu, John Thomas Sirr Irvine

School/Research organisations

Abstract

A standard reformed biogas composition, based on a 63% CH4 37% CO2 input biogas, was defined by calculation. It is designed to resemble the composition of biogas that would enter a real SOFC stack, assuming 80% fuel utilization, and 25% recirculation of the anode off-gas. It is thermodynamically impervious to coking above 720°C. This gas composition was then used to test the catalytic reforming performance of nickel powder and La0.8Ce0.1Ni0.4Ti0.6O3-δ at 900°C in the standard reformed biogas. No coking was seen on the powder samples by visual inspection after this test. The La0.8Ce0.1Ni0.4Ti0.6O3-δ is designed to exsolve Ni nanoparticles when reduced. SEM pictures of the post-test sample show some small particles that may be exsolved nanoparticles, but further investigation is needed to confirm this. Ni powder was the better reforming catalyst, but sintered extensively in the 3 h test. The La0.8Ce0.1Ni0.4Ti0.6O3-δ also showed reforming capability, and much better microstructural stability in the standard reformed biogas.

Close

Details

Original languageEnglish
Title of host publicationECS Transactions
PublisherElectrochemical Society
Pages1527-1532
Number of pages6
Volume57
Edition1
DOIs
Publication statusPublished - 2013
Event13th International Symposium on Solid Oxide Fuel Cells - Japan, Okinawa, United Kingdom
Duration: 6 Oct 201311 Oct 2013

Publication series

NameECS Transactions
ISSN (Print)1938-6737
ISSN (Electronic)1938-5862

Conference

Conference13th International Symposium on Solid Oxide Fuel Cells
CountryUnited Kingdom
CityOkinawa
Period6/10/1311/10/13

    Research areas

  • Biogas, Catalysis, Perovskite anode, Fuel utilisation, Nanoparticles, Nickel, Coking, Stabilty

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In : Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticle

ID: 109325738

Top