Skip to content

Research at St Andrews

Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation

Research output: Contribution to journalArticle

DOI

Standard

Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. / Yu, Jimin ; Thornalley, David J. R. ; Rae, James William Buchanan; McCave, Nick I.

In: Paleoceanography, Vol. 28, No. 2, 06.2013, p. 237-252.

Research output: Contribution to journalArticle

Harvard

Yu, J, Thornalley, DJR, Rae, JWB & McCave, NI 2013, 'Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation', Paleoceanography, vol. 28, no. 2, pp. 237-252. https://doi.org/10.1002/palo.20024

APA

Yu, J., Thornalley, D. J. R., Rae, J. W. B., & McCave, N. I. (2013). Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography, 28(2), 237-252. https://doi.org/10.1002/palo.20024

Vancouver

Yu J, Thornalley DJR, Rae JWB, McCave NI. Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography. 2013 Jun;28(2):237-252. https://doi.org/10.1002/palo.20024

Author

Yu, Jimin ; Thornalley, David J. R. ; Rae, James William Buchanan ; McCave, Nick I. / Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. In: Paleoceanography. 2013 ; Vol. 28, No. 2. pp. 237-252.

Bibtex - Download

@article{3e163dc0483b47a38683325549c0d266,
title = "Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation",
abstract = "[1] The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient inline image of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.",
author = "Jimin Yu and Thornalley, {David J. R.} and Rae, {James William Buchanan} and McCave, {Nick I.}",
year = "2013",
month = "6",
doi = "10.1002/palo.20024",
language = "English",
volume = "28",
pages = "237--252",
journal = "Paleoceanography",
issn = "0883-8305",
publisher = "John Wiley & Sons, Ltd.",
number = "2",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Calibration and application of B/Ca, Cd/Ca and delta11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation

AU - Yu, Jimin

AU - Thornalley, David J. R.

AU - Rae, James William Buchanan

AU - McCave, Nick I.

PY - 2013/6

Y1 - 2013/6

N2 - [1] The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient inline image of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.

AB - [1] The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient inline image of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.

U2 - 10.1002/palo.20024

DO - 10.1002/palo.20024

M3 - Article

VL - 28

SP - 237

EP - 252

JO - Paleoceanography

JF - Paleoceanography

SN - 0883-8305

IS - 2

ER -

Related by author

  1. Atmosphere-ocean CO2 exchange across the last deglaciation from the boron isotope proxy

    Shao, J., Stott, L. D., Gray, W. R., Greenop, R., Pecher, I., Neil, H. L., Coffin, R. B., Davy, B. & Rae, J. W. B., 4 Sep 2019, (Accepted/In press) In : Paleoceanography and Paleoclimatology. In press

    Research output: Contribution to journalArticle

  2. Discharge of meteoric water in the eastern Norwegian Sea since the last glacial period

    Hong, W-L., Lepland, A., Himmler, T., Kim, J-H., Chand, S., Sahy, D., Solomon, E. A., Rae, J. W. B., Martma, T., Nam, S-I. & Knies, J., 19 Jul 2019, In : Geophysical Research Letters. 46, 11 p.

    Research output: Contribution to journalArticle

  3. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales

    Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole, C., Greenop, R., Li, T., Littley, E., Nita, D. C., Stewart, J. A. & Taylor, B., 25 Oct 2018, In : Nature. 562, p. 569-573 16 p.

    Research output: Contribution to journalLetter

  4. The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry

    Allison, N., Cole, C., Hintz, C., Hintz, K., Rae, J. & Finch, A., 10 Oct 2018, In : Chemical Geology. 497, p. 162-169 8 p.

    Research output: Contribution to journalArticle

  5. Distribution and ecology of planktic foraminifera in the North Pacific: implications for paleo-reconstructions

    Taylor, B. J., Rae, J. W. B., Gray, W. R., Darling, K., Burke, A., Gersonde, R., Abelmann, A., Maier, E., Esper, O. & Ziveri, P., 1 Jul 2018, In : Quaternary Science Reviews. 191, p. 256-274 19 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Atmosphere-ocean CO2 exchange across the last deglaciation from the boron isotope proxy

    Shao, J., Stott, L. D., Gray, W. R., Greenop, R., Pecher, I., Neil, H. L., Coffin, R. B., Davy, B. & Rae, J. W. B., 4 Sep 2019, (Accepted/In press) In : Paleoceanography and Paleoclimatology. In press

    Research output: Contribution to journalArticle

  2. Improving North Atlantic marine core chronologies using 230Th-normalization

    Missiaen, L., Waelbroeck, C., Pichat, S., Jaccard, S. L., Eynaud, F., Greenop, R. & Burke, A., 10 Jul 2019, In : Paleoceanography and Paleoclimatology. 34, 17 p.

    Research output: Contribution to journalArticle

  3. Acceleration of northern ice sheet melt induces AMOC slowdown and northern cooling in simulations of the early last deglaciation

    Ivanovic, R., Gregoire, L., Burke, A., Wickert, A. D., Valdes, P. J., Ng, H. C., Robinson, L. F., McManus, J. F., Mitrovica, J. X., Lee, L. & Dentith, J. E., 27 Jul 2018, In : Paleoceanography and Paleoclimatology. Early View, 18 p.

    Research output: Contribution to journalArticle

  4. Deciphering the state of the late Miocene to early Pliocene equatorial Pacific

    Drury, A. J., Lee, G. P., Gray, W. R., Lyle, M., Westerhold, T., Shevenell, A. E. & John, C. M., 11 Mar 2018, In : Paleoceanography and Paleoclimatology. Early View, 18 p.

    Research output: Contribution to journalArticle

  5. Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions

    Haynes, L. L., Hönisch, B., Dyez, K. A., Holland, K., Rosenthal, Y., Fish, C. R., Subhas, A. V. & Rae, J. W. B., Jun 2017, In : Paleoceanography. 32, 6, p. 580-599

    Research output: Contribution to journalArticle

ID: 56000099

Top