Skip to content

Research at St Andrews

Carbon cycle dynamics during episodes of rapid climate change

Research output: Contribution to journalEditorialpeer-review


K J Meissner, E Brook, S A Finkelstein, J Rae

School/Research organisations


Past climate records reveal many instances of rapid climate change that are often coincident with fast changes in atmospheric greenhouse gas concentrations, suggesting links and positive feedbacks between the carbon cycle and the physical climate system. The carbon reservoirs that might have played an important role during these past episodes of rapid change include near-surface soil and peatland carbon, permafrost, carbon stored in vegetation, methane hydrates in deep-sea sediments, volcanism, and carbon stored in parts of the ocean that are easily ventilated through changes in circulation. To determine whether similar changes might lie in store in our future, we must gain a better understanding of the physics, biogeochemistry, dynamics, and feedbacks involved in such events. Specifically, we need to ascertain the main natural sources of atmospheric carbon dioxide and methane linked to rapid climate events in the paleoclimate record, and understand the mechanisms, triggers, thresholds, and feedbacks that were involved. Our review contributes to this focus issue by synthesizing results from nine studies covering a broad range of past time episodes. Studies are categorized into (a) episodes of massive carbon release millions of years ago; (b) the transition from the last glacial to the current interglacial 19 000–11 000 years ago; and (c) the current era. We conclude with a discussion on major remaining research challenges and implications for future projections and risk assessment.


Original languageEnglish
Article number040201
Number of pages8
JournalEnvironmental Research Letters
Issue number4
Publication statusPublished - 23 Mar 2021

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin

    Hong, W-L., Pape, T., Schmidt, C., Yao, H., Wallmann, K., Plaza-Faverola, A., Rae, J. W. B., Lepland, A., Bünz, S. & Bohrmann, G., May 2021, In: Marine and Petroleum Geology. 127, 13 p., 104957.

    Research output: Contribution to journalArticlepeer-review

  2. Atmospheric CO2 over the past 66 million years from marine archives

    Rae, J. W. B., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M. & Whiteford, R. D. M., May 2021, In: Annual Review of Earth and Planetary Sciences. 49, 1

    Research output: Contribution to journalArticlepeer-review

  3. Uranium distribution and incorporation mechanism in deep-sea corals: implications for seawater [CO32–] proxies

    Chen, S., Littley, E. F. M., Rae, J. W. B., Charles, C. D. & Adkins, J. F., 23 Mar 2021, In: Frontiers in Earth Science. 9, 14 p., 641327.

    Research output: Contribution to journalArticlepeer-review

  4. Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification

    Gagnon, A., Gothmann, A., Branson, O., Rae, J. W. B. & Stewart, J., 15 Jan 2021, In: Earth and Planetary Science Letters. 554, 10 p., 116662.

    Research output: Contribution to journalArticlepeer-review

  5. Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific

    Rae, J. W. B., Gray, W. R., Wills, R. C. J., Eisenman, I., Fitzhugh, B., Fotheringham, M., Littley, E., Rafter, P. A., Rees-Owen, R. L., Ridgwell, A., Taylor, B. & Burke, A., 9 Dec 2020, In: Science Advances. 6, 50, 13 p., eabd1654.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. A meta-analysis of the relationship between companies’ greenhouse gas emissions and financial performance

    Galama, J. T. & Scholtens, B., 25 Mar 2021, In: Environmental Research Letters. 16, 4, 24 p., 043006.

    Research output: Contribution to journalArticlepeer-review

  2. Andean grasslands are as productive as tropical cloud forests

    Oliveras, I., Girardin, C., Doughty, C. E., Cahuana, N., Arenas, C. E., Oliver, V., Huasco, W. H. & Malhi, Y., Nov 2014, In: Environmental Research Letters. 9, 11, 10 p., 115011.

    Research output: Contribution to journalArticlepeer-review

  3. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements

    Neckel, N., Kropáček, J., Bolch, T. & Hochschild, V., 1 Jan 2014, In: Environmental Research Letters. 9, 1, 014009.

    Research output: Contribution to journalArticlepeer-review

ID: 273498839