Skip to content

Research at St Andrews

Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-d in relation to its potential as an SOFC anode material

Research output: Contribution to journalArticle

DOI

Author(s)

School/Research organisations

Abstract

Natural gas is an extremely attractive fuel for use in fuel cells. Steam-reforming and oxidation of methane are particularly important for the direct methane fuel cell. A perovskite-related material, La0.75Sr0.25Cr0.5Fe0.5O3-delta (LSCrF), has been synthesized, and its catalytic properties as a potential anode material for solid oxide fuel cells (SOFCs) have been examined. The material exhibits an overall orthorhombic structure with a = 5.4926(5) Angstrom, b = 5.5339(4) Angstrom, c = 7.7646(8) Angstrom, and V = 236.01(5) Angstrom(3) according to the X-ray data. It is at its limit of stability under reducing SOFC anode conditions. An 11% conversion for methane steam-reforming was observed at 900 degreesC when the steam-to-methane ratio was 1/1. A conversion of 68% for methane oxidation with a CO2 selectivity of 99% was achieved at 900 degreesC when an equimolar mixture of CH4 and O-2 was introduced into the reactor. The partial or complete oxidation depends on both temperature and the pO(2)/pCH(4) ratio. Therefore, LSCrF is a good catalyst for methane-reforming and oxidation. LSCrF is a methane complete oxidation catalyst when close to oxygen stoichiometric and a methane partial oxidation catalyst when the oxygen vacancy content increases. The anode polarization resistances in wet 5% H-2/Ar and wet H-2 are about 1.79 and 1.15 Omega cm(2), respectively, at 850 degreesC. This was improved to 0.98 Omega cm(2) in wet H-2 when the operation temperature was increased to 900 degreesC, but this is still too high for a viable SOFC electrode system.

Close

Details

Original languageEnglish
Pages (from-to)4116-4121
Number of pages6
JournalChemistry of Materials
Volume16
DOIs
Publication statusPublished - 19 Oct 2004

    Research areas

  • SOFC ANODE, METHANE, OXIDATION, TEMPERATURE, STABILITY

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  3. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  4. Nanostructured carbons containing FeNi/NiFe2O4 supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions

    Aziz, I., Lee, J. G., Duran, H., Kirchhoff, K., Baker, R. T., Irvine, J. T. S. & Arshad, S. N., 11 Nov 2019, In : RSC Advances. 9, 63, p. 36586-36599 14 p.

    Research output: Contribution to journalArticle

  5. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)
    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In : Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticle

  2. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In : Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticle

  3. A reinvestigation of Na2Fe2(C2O4)2H2O: an iron-based positive electrode for secondary batteries

    Yao, W., Sougrati, M-T., Hoang, K., Hui, J., Lightfoot, P. & Armstrong, A. R., 14 Nov 2017, In : Chemistry of Materials. 29, 21, p. 9095-9101

    Research output: Contribution to journalArticle

  4. Assembly-diassembly-organization-reassembly synthesis of zeolites based on cfi-type layers

    Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., Mayoral, A., Opanasenko, M., Položij, M., Čejka, J., Nachtigall, P. & Morris, R. E., 11 Jul 2017, In : Chemistry of Materials. 29, 13, p. 5605-5611

    Research output: Contribution to journalArticle

  5. Controlling of structural ordering and rigidity of β-SiAlON:Eu through chemical cosubstitution to approach narrow-band-emission for light-emitting diodes application

    Zhang, X., Fang, M-H., Tsai, Y-T., Lazarowska, A., Mahlik, S., Lesniewski, T., Grinberg, M., Pang, W. K., Pan, F., Liang, C., Zhou, W., Wang, J., Lee, J-F., Cheng, B-M., Hung, T-L., Chen, Y-Y. & Liu, R-S., 22 Aug 2017, In : Chemistry of Materials. 29, 16, p. 6781-6792

    Research output: Contribution to journalArticle

ID: 369220

Top