Skip to content

Research at St Andrews

Cation control of cooperative CO2 adsorption in Li-containing mixed cation forms of the flexible zeolite merlinoite

Research output: Contribution to journalArticlepeer-review

Open Access Status

  • Embargoed (until 10/02/22)

Author(s)

Veselina Mihaylova Georgieva, Elliott Leigh Bruce, Ruxandra Georgiana Chitac, Magdalena Malgorzata Lozinska, Anna Hall, Claire Murray, Ronald Smith, Alessandro Turrina, Paul Anthony Wright

School/Research organisations

Abstract

The lithium-exchanged form of a merlinoite zeolite (MER) with Si/Al = 4.2 (unit cell composition Li6.2Al6.2Si25.8O64) possesses a strongly contracted framework when dehydrated (the unit cell volume decreases by 12.9% from the hydrated ‘wide-pore’ form to the dehydrated ‘narrow-pore’ form). It shows cooperative adsorption behaviour for CO2, leading to two-step isotherms with the second step at elevated pressure (>2.5 bar at 298 K). Partially exchanging Na and K cations to give single phase Li,Na- and Li,K-MER materials reduces the pressure of this second adsorption step because the transition from narrow- to wide-pore forms upon CO2 adsorption occurs at lower partial pressures compared to that in Li-MER: partial exchange with Cs does not reduce the pressure of this transition. Exsolution effects are also seen at K cation contents >2.2 per unit cell. The phase transitions proceed via intermediate structures, by
complex phase behaviour rarely seen for zeolitic materials. The strongly distorted narrow-pore structures adopted upon dehydration give one dimensional channel structures in which the percolation of CO2 through the material requires cation migration from their locations in ste sites. This is slow in Li3.4Cs2.8-MER where Cs cations occupy these critical ste cavities in the
channels, causing very slow adsorption kinetics. As the partial pressure of CO2 increases, a threshold pressure is reached where cooperative adsorption and Cs cation migration occur and the wide-pore form results, with a three dimensionally connected pore system, leading to a sharp increase in uptake. This is far in excess of the increase of unit cell volume because more of the pore space becomes accessible. Strong hysteretic effects occur upon desorption, leading to CO2 encapsulation. CO2 remaining within the material after repeated adsorption/desorption cycles without heated activation improves sorption kinetics and modifies the stepped isotherms.
Close

Details

Original languageEnglish
JournalChemistry of Materials
VolumeArticles ASAP
Early online date10 Feb 2021
DOIs
Publication statusE-pub ahead of print - 10 Feb 2021

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Silicon redistribution, acid site loss and the formation of a core-shell texture upon steaming SAPO-34 and their impact on catalytic performance in the methanol-to-olefins (MTO) reaction

    Minova, I. B., Barrow, N. S., Sauerwein, A. C., Naden, A. B., Cordes, D. B., Slawin, A. M. Z., Schuyten, S. J. & Wright, P. A., Mar 2021, In: Journal of Catalysis. 395, p. 425-444 20 p.

    Research output: Contribution to journalArticlepeer-review

  2. Understanding CO2 adsorption in a flexible zeolite through a combination of structural, kinetic and modelling techniques

    Verbraeken, M. C., Mennitto, R., Georgieva, V. M., Bruce, E. L., Greenaway, A. G., Cox, P. A., Gi Min, J., Bong Hong, S., Wright, P. A. & Brandani, S., 1 Feb 2021, In: Separation and Purification Technology. 256, 14 p., 117846.

    Research output: Contribution to journalArticlepeer-review

  3. Isoreticular chemistry of scandium analogues of the multicomponent metal-organic framework MIL-142

    Prasad, R. R. R., Pleass, C., Rigg, A., Cordes, D. B., Lozinska, M. M., Georgieva, V. M., Hoffmann, F., Slawin, A. M. Z. & Wright, P. A., 8 Dec 2020, In: CrystEngComm. 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. Effects of crystal size on methanol to hydrocarbon conversion over single crystals of ZSM-5 studied by synchrotron infrared microspectroscopy

    Minova, I. B., Matam, S. K., Greenaway, A., Catlow, C. R. A., Frogley, M. D., Cinque, G., Wright, P. A. & Howe, R. F., 14 Sep 2020, In: Physical chemistry chemical physics : PCCP. 22, 34, p. 18849-18859 11 p.

    Research output: Contribution to journalArticlepeer-review

  5. Site-specific iron substitution in STA-28, a large pore aluminophosphate zeotype prepared using 1,10-phenanthrolines as framework-bound templates

    Watts, A. E., Lozinska, M. M., Slawin, A. M. Z., Mayoral, A., Dawson, D. M., Ashbrook, S. E., Bode, B. E., Dugulan, I., Shannon, M., Cox, P., Turrina, A. & Wright, P. A., 17 Aug 2020, In: Angewandte Chemie International Edition. 59, 35, p. 15186-15190 5 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)

    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Local structure and order-disorder transitions in "empty" ferroelectric tetragonal tungsten bronzes

    McNulty, J. A., Pesquera, D., Gardner, J., Rotaru, A., Playford, H. Y., Tucker, M. G., Carpenter, M. A. & Morrison, F. D., 13 Oct 2020, In: Chemistry of Materials. 32, 19, p. 8492-8501

    Research output: Contribution to journalArticlepeer-review

  2. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In: Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticlepeer-review

  3. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In: Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticlepeer-review

  4. A reinvestigation of Na2Fe2(C2O4)2H2O: an iron-based positive electrode for secondary batteries

    Yao, W., Sougrati, M-T., Hoang, K., Hui, J., Lightfoot, P. & Armstrong, A. R., 14 Nov 2017, In: Chemistry of Materials. 29, 21, p. 9095-9101

    Research output: Contribution to journalArticlepeer-review

ID: 272936325

Top