Skip to content

Research at St Andrews

Ce(Mn,Fe)O2 –(La,Sr)(Fe,Mn)O3 composite as an active cathode for electrochemical reduction of CO2 in proton conducting solid oxide cells

Research output: Contribution to journalArticle

Author(s)

Tae Ho Shin, Jaeha Myung, Khan M. Naeem, Cristian Daniel Savaniu, John Thomas Sirr Irvine

School/Research organisations

Abstract

A solid oxide electrolysis cell concept for reducing CO2 to CO was studied using a proton conducting mixed oxide- BaCe0.7Zr0.1Y0.1Yb0.06Zn0.04O3-δ (BCZYYZ) as an electrolyte. The oxide composite mixture: Ce0.6Mn0.3Fe0.1O2 – La0.6Sr0.4Fe0.9Mn0.1O3 (12.5-87.5 wt%) was examined as enhancing catalyst electrode for CO2 reduction and proton oxidation reaction on the cathode side for avoiding coke formation. Here we demonstrate the successful electrochemical reduction of CO2 in proton conducting SOECs. During electrochemical reduction of CO2 at 700oC, current densities as high as 0.5 A/cm2 and 1 A/cm2 at 1.3 V and 2.2 V respectively, were withdrawn even though the cell employed a 400 μm thick BCZYYZ electrolyte support.

Close

Details

Original languageEnglish
Pages (from-to)106-109
Number of pages4
JournalSolid State Ionics
Volume275
Early online date29 Mar 2015
DOIs
Publication statusPublished - Jul 2015

    Research areas

  • Solid oxide electrolyser, Composite cathode, CO2 reduction, Proton conductor, Ceria

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  4. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

  5. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In : International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In : Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticle

  2. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In : Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

    Hui, J., Neagu, D., Miller, D. N., Yue, X., Ni, C. & Irvine, J. T. S., Feb 2018, In : Solid State Ionics. 315, p. 126-130 5 p.

    Research output: Contribution to journalArticle

  4. Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3 − δ proton conductor

    Naeem Khan, M., Savaniu, C. D., Azad, A. K., Hing, P. & Irvine, J. T. S., May 2017, In : Solid State Ionics. 303, p. 52-57 6 p.

    Research output: Contribution to journalArticle

  5. Flux investigations on composite (La0.8Sr0.2)0.95Cr0.5Fe0.5O3 − δ–Sc0.198Ce0.012Zr0.789O1.90 oxygen transport membranes

    Dehaney-Steven, Z. A., Papargyriou, D. & Irvine, J. T. S., May 2016, In : Solid State Ionics. 288, p. 338-341 4 p.

    Research output: Contribution to journalArticle

ID: 175276917

Top