Skip to content

Research at St Andrews

Ce(Mn,Fe)O2 –(La,Sr)(Fe,Mn)O3 composite as an active cathode for electrochemical reduction of CO2 in proton conducting solid oxide cells

Research output: Contribution to journalArticle

Author(s)

Tae Ho Shin, Jaeha Myung, Khan M. Naeem, Cristian Daniel Savaniu, John Thomas Sirr Irvine

School/Research organisations

Abstract

A solid oxide electrolysis cell concept for reducing CO2 to CO was studied using a proton conducting mixed oxide- BaCe0.7Zr0.1Y0.1Yb0.06Zn0.04O3-δ (BCZYYZ) as an electrolyte. The oxide composite mixture: Ce0.6Mn0.3Fe0.1O2 – La0.6Sr0.4Fe0.9Mn0.1O3 (12.5-87.5 wt%) was examined as enhancing catalyst electrode for CO2 reduction and proton oxidation reaction on the cathode side for avoiding coke formation. Here we demonstrate the successful electrochemical reduction of CO2 in proton conducting SOECs. During electrochemical reduction of CO2 at 700oC, current densities as high as 0.5 A/cm2 and 1 A/cm2 at 1.3 V and 2.2 V respectively, were withdrawn even though the cell employed a 400 μm thick BCZYYZ electrolyte support.

Close

Details

Original languageEnglish
Pages (from-to)106-109
Number of pages4
JournalSolid State Ionics
Volume275
Early online date29 Mar 2015
DOIs
Publication statusPublished - Jul 2015

    Research areas

  • Solid oxide electrolyser, Composite cathode, CO2 reduction, Proton conductor, Ceria

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In : Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticle

Related by journal

  1. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In : Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticle

  2. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In : Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticle

  3. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In : Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticle

  4. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In : Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  5. Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

    Hui, J., Neagu, D., Miller, D. N., Yue, X., Ni, C. & Irvine, J. T. S., Feb 2018, In : Solid State Ionics. 315, p. 126-130 5 p.

    Research output: Contribution to journalArticle

ID: 175276917

Top