Skip to content

Research at St Andrews

Changes in cardiac Na+/K+-ATPase expression and activity in female rats fed a high fat diet

Research output: Contribution to journalArticle


Aleksandra Jovanovic, Milan Obradovic, Emina Sudar-Milovanovic, Alan J. Stewart, Samantha J. Pitt, Dragan Alvantic, Ema Aleksic, Esma R. Isenovic

School/Research organisations


The aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150–200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30% (p < 0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p < 0.05), and association of IRS1 with p85 subunit of PI3K by 42% (p < 0.05), while the levels of cardiac RhoA and ROCK2 were significantly increased by 84% (p < 0.01) and 62% (p < 0.05), respectively. Our results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular mechanisms involving RhoA/ROCK and IRS-1/PI3K signalling in female rats.


Original languageEnglish
Pages (from-to)49-58
Number of pages10
JournalMolecular and Cellular Biochemistry
Issue number1-2
Early online date31 May 2017
Publication statusPublished - Dec 2017

    Research areas

  • High-fat diet, Estradiol, NA+/K+-ATPase, Obesity, RhoA/ROCK signalling, Female

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Total plasma magnesium, zinc, copper and selenium concentrations in type-I and type-II diabetes

    Sobczak, A. I. S., Stefanowicz, F., Pitt, S. J., Ajjan, R. A. & Stewart, A. J., Feb 2019, In : BioMetals. 32, 1, p. 123-138 16 p.

    Research output: Contribution to journalArticle

  2. Influence of zinc on glycosaminoglycan neutralisation during coagulation

    Sobczak, A. I. S., Pitt, S. J. & Stewart, A. J., Sep 2018, In : Metallomics. 10, 9, p. 1180-1190 11 p.

    Research output: Contribution to journalReview article

  3. Glycosaminoglycan neutralization in coagulation control

    Sobczak, A. I. S., Pitt, S. J. & Stewart, A. J., Jun 2018, In : Arteriosclerosis, Thrombosis, and Vascular Biology. 38, 6, p. 1258-1270 14 p.

    Research output: Contribution to journalReview article

  4. Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage

    Reilly-O'Donnell, B., Robertson, G. B., Karumbi, A., McIntyre, C., Bal, W., Nishi, M., Takeshima, H., Stewart, A. J. & Pitt, S. J., 11 Aug 2017, In : Journal of Biological Chemistry. 292, 32, p. 13361-13373 13 p.

    Research output: Contribution to journalArticle

  5. 17ß-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats

    Zafirovic, S., Obradovic, M., Sudar-Milovanovic, E., Jovanovic, A., Stanimirovic, J., Stewart, A. J., Pitt, S. J. & Isenovic, E. R., 5 May 2017, In : Molecular and Cellular Endocrinology. 446, p. 12-20 9 p.

    Research output: Contribution to journalArticle

Related by journal

ID: 250088888