Skip to content

Research at St Andrews

Characterization of YSr2Fe3O8 − δ as electrode materials for SOFC

Research output: Contribution to journalArticlepeer-review

Author(s)

Abul Kalam Azad, John Thomas Sirr Irvine

School/Research organisations

Abstract

YSr2Fe3O8 (- delta) was prepared by traditional solid state reaction method and characterized by X-ray diffraction, ac impedance, dc conductivity, dilatometry and thermogravimetric analysis for possible use in solid oxide fuel cells (SOFCs). YSr2Fe3O8 (- delta) crystallizes with tetragonal symmetry in the space group P4/mmm and found to be stable at high temperatures under H-2 and air. Four probe dc electrical conductivity measurements show that the conductivity increases up to 745 K and then decreases with temperature; the highest conductivity sigma(745K) = 43.5 S cm(-1). The n-type conductivity at low oxygen partial pressure (pO(2)) changes to p-type at high pO(2). Polarization behavior was investigated measuring the ac impedance response in symmetrical cell arrangements in air with YSZ and GDC electrolytes. Cathodic area specific resistance (ASR) varies with firing temperature. The lowest area specific resistance was observed with a GDC electrolyte fired at 1000 degrees C. In case of YSZ, ASR increases and in case of GDC, ASR decreases in air when electrode firing temperature decreases. At 800 degrees C ASRs are 0.20 Omega cm(2) and 0.65 Omega cm(2) with GDC and YSZ electrolytes, respectively, in air. Fuel cell measurements with symmetrical electrodes were performed using a thin YSZ electrolyte under H-2 at anode and air at cathode, show that the power density is about 0.035 W/cm(2) at 900 degrees C. (C) 2010 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)225-228
Number of pages4
JournalSolid State Ionics
Volume192
Issue number1
DOIs
Publication statusPublished - 16 Jun 2011

    Research areas

  • Solid oxide fuel cells, Electrode materials, Impedance measurements, Conductivity

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  2. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  3. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  4. Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

    Price, R., Cassidy, M., Grolig, J. G., Longo, G. G., Weissen, U. G., Mai, A. G. & Irvine, J. T. S., 12 Feb 2021, In: Advanced Energy Materials. Early View, 21 p., 2003951.

    Research output: Contribution to journalReview articlepeer-review

  5. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 10689080

Top