Skip to content

Research at St Andrews

Circular statistics meets practical limitations: a simulation-based Rao’s spacing test for non-continuous data

Research output: Contribution to journalArticle

Author(s)

Lukas Landler, Graeme D. Ruxton, E. Pascal Malkemper

School/Research organisations

Abstract

Background: For data collected on a circular rather than linear scale, a very common procedure is to test whether the underlying distribution appears to deviate from circular uniformity. Rao’s spacing test is often used to evaluate the support the data offers for the null hypothesis of uniformity. Here we demonstrate that the traditional version of this test fails to adequately control type I error rate when the data is non-continuous (i.e. is rounded/grouped to a finite number of discrete values, e.g. to the nearest degree, a common situation). To overcome this issue, we provide a numerically-intensive simulation version of the test.

Methods: We use a simulation study to explore the performance of the traditional and our novel variant on Rao’s spacing test, both in terms of control of type I error rate and statistical power.

Results: When data is measured on a continuous circular scale then both methods offer good control of type I error and similar statistical power. If the data is rounded (even to a relatively fine scale such as to the nearest degree – giving 360 possible values), however, the traditional method produces highly inflated type I error rates, particularly with high sample sizes, that make it inappropriate for application to such data. In contrast, our simulation method retains good control of type I error while offering levels of statistical power similar to the traditional Rao test.

Conclusions: The traditional method of applying Rao’s spacing test should be replaced by the simulation-based variant introduced here. The two methods offer similar performance but only the simulation method retains good control of the type I error rate when circular data is rounded to a finite set of values (likely due to limited precision of measuring equipment). Adoption of the simulation variant will substantially improve the reliability of this regularly-used test in the commonplace situation where data values are rounded.
Close

Details

Original languageEnglish
Article number15
Number of pages5
JournalMovement Ecology
Volume7
DOIs
Publication statusPublished - 10 May 2019

    Research areas

  • Circular statistics, Limited precision, Rayleigh test, Testing for circular uniformity, Randomisation testing, Statistical power, Oriana

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Birdsbesafe® collar cover reduces bird predation by domestic cats (Felis catus)

    Pemberton, C. & Ruxton, G. D., 8 Oct 2019, In : Journal of Zoology. Early View

    Research output: Contribution to journalArticle

  2. Secondary dispersal mechanisms of winged seeds: a review

    der Weduwen, D. & Ruxton, G. D., Oct 2019, In : Biological Reviews. 94, 5, p. 1830-1838 9 p.

    Research output: Contribution to journalReview article

  3. Deconstructing collective building in social insects: implications for ecological adaptation and evolution

    Invernizzi, E. & Ruxton, G. D., 8 Aug 2019, In : Insectes Sociaux. First Online, 12 p.

    Research output: Contribution to journalReview article

  4. The Hermans–Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology

    Landler, L., Ruxton, G. D. & Malkemper, E. P., 7 Aug 2019, In : BMC Ecology. 19, 8 p., 30.

    Research output: Contribution to journalArticle

  5. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In : Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Movement Ecology (Journal)

    Will Cresswell (Reviewer)
    30 Aug 2018

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Potential path volume (PPV): a geometric estimator for space use in 3D

    Demšar, U. & Long, J. A., 29 Apr 2019, In : Movement Ecology. 7, 14 p., 14.

    Research output: Contribution to journalArticle

  2. Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming

    Papastamatiou, Y., Watanabe, Y., Demsar, U., Leos-Barajas, V., Bradley, D., Langrock, R., Weng, K., Lowe, C., Friedlander, A. & Caselle, J., 21 Jun 2018, In : Movement Ecology. 6, 15 p., 9.

    Research output: Contribution to journalArticle

  3. Summer at the beach: spatio-temporal patterns of white shark occurrence along the inshore areas of False Bay, South Africa

    Kock, A. A., Photopoulou, T., Durbach, I., Mauff, K., Meÿer, M., Kotze, D., Griffiths, C. & O'Riain, M. J., 22 May 2018, In : Movement Ecology. 6, 13 p., 7.

    Research output: Contribution to journalArticle

  4. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds

    Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F., 26 Oct 2016, In : Movement Ecology. 4, 20 p., 25.

    Research output: Contribution to journalReview article

ID: 258950688

Top